
CMSuggester: Method Change Suggestion to
Complement Multi-Entity Edits

Ye Wang1, Na Meng1, and Hao Zhong2

1 Virginia Tech, Blacksburg VA 24061, USA
{yewang16,nm8247}@vt.edu

2 Shanghai Jiao Tong University, Shanghai 200240, China
zhonghao@sjtu.edu.cn

Abstract. Developers spend significant time and effort in maintaining
software. In a maintenance task, developers sometimes have to simul-
taneously modify multiple program entities (i.e., classes, methods, and
fields). We refer to such complex changes as multi-entity edits. It is chal-
lenging for developers to apply multi-entity edits consistently and com-
pletely. Existing tools provide limited support for such edits, mainly be-
cause the co-changed entities usually contain diverse program contexts
and experience different changes. This paper introduces CMSuggester,
an automatic approach that suggests complementary changes for multi-
entity edits. Given a multi-entity edit that adds a field and modifies one
or more methods to access the field, CMSuggester suggests other meth-
ods to co-change for the new field access. CMSuggester is inspired by
our previous empirical study, which reveals that the methods co-changed
to access a new field usually commonly access the same set of fields de-
clared in the same class. By extracting the fields accessed by the given
changed method(s), CMSuggester identifies and recommends any un-
changed method that also accesses those fields.
Our evaluation shows that CMSuggester recommends changes for 279
out of 408 suggestion tasks. With the recommended methods, CMSug-
gester achieves 73% F-score on average, while the widely used tool ROSE
achieves 48% F-score. In most cases, as shown in our evaluation results,
CMSuggester are useful for developers, since it recommend complete and
correct multi-entity edits.
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1 Introduction

Developers spend almost 70% of time and resources in maintenance to fix bugs,
add features, or refactor code [11]. Due to the complexity of modern software
systems, developers sometimes apply complex changes by modifying multiple
program entities (i.e., classes, methods, and fields) for one maintenance task.
Herzig et al. [15] report that more than half of maintenance issues are related
to bug fixes, and Zhong and Su [32] report that developers fixed around 80% of
real bugs by editing multiple program locations together. A multi-entity edit is a
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program commit that simultaneously changes multiple entities. It is challenging
for developers to always apply multi-entity edits consistently and completely.
Park et al. studied why some bug fixes failed to repair bugs [24], and observed
that developers sometimes failed to identify all the edit locations relevant to a
bug. For instance, they can forget to update the value initialization of a newly
added field in certain methods.

Existing tools provide limited support for how to apply multi-entity edits [33,
30, 17, 22]. For instance, Zimmerman et al. [33] and Ying et al. [30] indepen-
dently developed tools to mine the association rules between co-changed entities
from software version histories, e.g., “if method A is changed, method B is also
changed”. Based on such rules, when developers change method A, method B is
automatically suggested as a likely change. However, the suggestion accuracy of
these tools is low for two reasons. First, they do not observe any syntactic or se-
mantic relationship among co-changed entities. If some entities are accidentally
co-changed in history, the resulting inferred rules are incorrect, and can produce
false positives (e.g., false alarms) when predicting changes. Second, if some en-
tity pairs were never co-changed in history, these tools cannot infer or predict
any potential co-change of the entities in the future, causing false negatives.

Another related tool is LSDiff [17]. Given a textual diff, LSDiff infers system-
atic structural differences as logic rules, and detects anomalies from systematic
changes as exceptions to the inferred logic rules. One sample rule is “All classes
implementing type A have method B deleted except class C.” LSDiff mainly fo-
cuses on systematic entity additions and deletions, instead of entity changes (or
updates). LASE infers a general program transformation from the exemplar edits
in several similarly changed methods, and leverages the inferred transformation
to (1) locate other methods for change and (2) suggest customized edits [22].
LASE is useful only when similar methods should be changed similarly; it does
not help if distinct edits should be co-applied to dissimilar methods.

A recent study reveals a *CM→AF change pattern, which popularly exists
in multi-entity edits [28]. AF means Added Field, while *CM represents one
or more Changed Methods. The pattern shows that when one field is added, de-
velopers usually change multiple methods together to access the field. As the
co-changed methods usually contain different program contexts and experience
divergent changes, developers may forget to change all relevant methods to ac-
cess the new field. This paper introduces a novel approach—CMSuggester—that
suggests methods to co-change and helps developers completely apply such ed-
its. Specifically, we first conducted a preliminary study (Section 3) to explore
whether there is any syntactic or semantic relationship between the co-changed
entities in *CM→AF edits. We found that the co-changed methods usually ac-
cess common fields before an edit is applied. It indicates that there are clusters
of methods that access the same sets of fields. If one or more methods in
a cluster are changed to access a new field, the other methods from the same
cluster are likely to be co-changed for the new field access.

Based on the observation, we developed CMSuggester to suggest complemen-
tary changes for *CM→AF multi-entity edits (Section 4). Specifically, given an
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added field (fn) and one or more changed methods, CMSuggester first extracts
existing fields accessed by the changed methods. If some of such fields (i) have
the same naming pattern as fn, and (ii) are accessed in the same way as fn (i.e.,
purely read, purely written, or read-written), CMSuggester considers them as the
peer fields of fn. CMSuggester then locates any unchanged method that accesses
the peer fields, and suggests those methods as candidate change locations.

In this paper, we made the following contributions:

– We designed and implemented a novel approach CMSuggester that suggests
complementary changes for *CM→AF edits. The approach is based on our
empirical study [28], which reveals that the co-changed methods for an added
field usually access existing fields in common. CMSuggester can be integrated
to Integrated Development Environment (IDE) or version control systems to
help developers completely apply multi-entity changes.

– We compared CMSuggester with a widely used tool ROSE [33], in terms of
their change suggestion capability. We leveraged 106 real multi-entity edits
from 4 open source projects to construct 408 change suggestion tasks. Within
each task, a tool is given one added field and one related changed method as
input to predict likely changes. CMSuggester recommends changes for 279 of
these tasks. Among the 279 cases, CMSuggester’s recommendation obtains
75% precision, 72% recall, and 73% F-score on average. Meanwhile, ROSE
suggests changes in only 117 cases, obtaining 41% precision, 58% recall, and
48% F-score. The results indicate that CMSuggester effectively complements
ROSE when suggesting changes for *CM→AF edits.

– We defined two filters in CMSuggester to ensure accurate method change
suggestion. By disabling the filters, we implemented three variants of CM-
Suggester, and the evaluation results on these variants show our filters im-
prove our f-scores by about 10%. Especially, the naming-based filter achieves
a better trade-off between precision and recall than the access-based filter.

2 Motivating Example

Developers can fail to fully apply changes in tasks requiring multi-entity edits.
Figure 1 shows a simplified program revision to Derby [4]—a Java-based rela-
tional database. The added code is colored with blue and marked with “+”. In
this revision, developers added a field clobValue (line 5) and modified 12 meth-
ods in different ways to access the field (e.g., changing getLength() at lines 8-9).
However, developers forgot to also change restoreToNull() (lines 15-20). Conse-
quently, the multi-entity edit is incomplete. The inadvertently “missed change”
remained in the software for more than two years, until developers finally in-
serted a statement clobValue = null; to restoreToNull() [7].

It is challenging for developers to examine or ensure the completeness of such
multi-entity edits. When a method fails to be changed to access a new field, com-
pilation error are often not triggered, neither can any well-known bug detector
reveal the problem. In this example, the missing field access in restoreToNull()
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did not introduce any compilation errors, and was identified two years after it
was first introduced.

1 public c lass SQLChar extends
2 DataType implements
3 StringDataValue , StreamStorable {
4 . . .
5 + protected Clob c lobValue ;
6 public int getLength ( ) throws
7 StandardException{
8 + i f ( c lobValue != null ) {
9 + return getClobLength ( ) ; }

10 i f ( rawLength != −1)
11 return rawLength ;
12 i f ( stream != null ) {
13 . . .
14 }
15 public void re s toreToNul l ( ) {
16 value = null ;
17 stream = null ;
18 rawLength = −1;
19 cKey = null ;
20 }}

Fig. 1: A program revision requires
1 field addition and 13 method-level
changes. However, developers changed
only 12 of the 13 methods, ignoring
restoreToNull() for change [6].

In this paper, we developed
CMSuggester, a tool that iden-
tifies complementary changes and
helps developers avoid incomplete
multi-entity edits. For this example,
given the added field clobValue and
the changed method getLength(),
CMSuggester identifies two exist-
ing fields accessed by getLength():
rawLength and stream. Similar to
clobValue, these fields are purely

read by the method. Thus, CMSug-
gester considers both fields as peers
of the new field. CMSuggester then
searches for any method that ac-
cesses the peer fields but has not
been changed to access the new
field. In this way, CMSuggester finds
restoreToNull()—which accesses the
peer fields in the same “pure write”
mode—and recommends the method
for change. With CMSuggester, de-
velopers can identify the change lo-
cations that they may otherwise miss when applying multi-entity edits.

3 Our Empirical Finding

In our prior study [28], we analyzed 2,854 bug fixes from four popular open
source projects to explore multi-entity edits, including Aries [2], Cassandra [3],
Derby [4], and Mahout [5]. Our study shows that recurring change patterns
commonly exist in all the projects. In particular, *CM→AF is one of the most
popular patterns. Therefore, in this paper, we sampled five such commits in each
project to manually analyze the co-changed methods for any newly added field.

Table 1 presents our inspection results. For each added field, there are 2-
5 methods co-changed to access the field. We manually compared co-changed
methods to identify any commonality between them. We found that in 15 of
the 20 examined revisions, the co-changed methods commonly access
existing field(s) before the edits are applied. Among the other five program
commits, two commits have co-changed methods to commonly invoke certain
method(s), while the remaining ones have no commonality among them. Our
finding shows that when one or more methods in a cluster are changed to access
a new field, the other methods from the same cluster are likely to be co-changed
for the new field access. This finding is consistent with the Object Oriented (OO)
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Table 1: Commonality inspection of 20 *CM→AF multi-entity edits

Project Commits Added Field
# of

Changed
Methods

Commonality

Aries 3d072a4 monitor 2 Field access
50ca3da properties 2 Field access
5d334d7 BEAN 2 Method invocation
95766a2 NS AUTHZ 2 None
9586d78 enlisted 3 Field access

Cassandra 0792766 validBufferBytes 3 Field access
0963469 isStopped 2 Field access
0d1d3bc componentIndex 3 Field access
1c9c47d nextFlags 2 Field access
266e94f STREAMING SUBDIR 2 Method invocation

Derby f578f070 stateHoldability 2 Field access
6eb5042 outputPrecision 2 Field access
2f41733 MAX OVERFLOW ONLY REC SIZE 3 None
099e28f XML NAME 3 Field access
81b9853 activation 5 Field access

Mahout 0be2ea4 LOG 2 Field access
0fe6a49 FLAG SPARSE ROW 2 Field access
22d7d31 namedVector 2 Field access
29af4d7 normalizer 2 Field access
2f7f0dc NUM GROUPS DEFAULT 2 None

paradigm, since OO emphasizes to group related data in the same structure to
ease modification and understanding [25].

4 Approach

CMSuggester	

Peer	Field	
Identification	

Naming-
Based	Filter	

Access-Based	
Filter	

Peer-Based	
Method	Search	

AF	

AF	AF	CM1,	…	

AF	AF	Method(s)	
to	change	

Fig. 2: CMSuggester’s overview

Section 3 shows it is promis-
ing to suggest methods for
change based on the accessed
fields by already-changed meth-
ods. Inspired by that, we de-
veloped CMSuggester with
the hypothesis that simi-
lar field usage indicates
methods’ co-change rela-
tionship. Figure 2 shows the overview of the approach. Given an edit that adds a
field and changes one or more methods to access the field, CMSuggester extracts
peer fields from the changed method(s) (Section 4.1), filters the fields based on
naming patterns and access modes (Section 4.2 and 4.3), and searches for any
unchanged method with the refined fields for change suggestion (Section 4.4).

4.1 Peer Field Identification

Based on our finding in Section 3, we believe that when a cluster of methods
need to commonly access a cluster of fields to implement relevant functionalities,
the fields are more likely to be defined in the same class. Given a newly added
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field fn, we use peer fields to denote the existing fields that are (1) declared in
the same class as fn, and (2) accessed by one or more changed methods that also
access fn. For our motivating example, the newly added field is clobValue, and
we identify that in the method getLength(), rawLength and stream are its peer
fields. CMSuggester traverses the AST of each changed method’s old version to
extract the accessed existing fields, obtaining a peer field set P = {p1, p2, . . .}.

4.2 Naming-Based Filtering

We notice that peer fields may have diverse powers to indicate the usage of
fn. To ensure CMSuggester’s accuracy when suggesting methods for change,
we refined the peer fields P with two intuitive filters. The first filter leverages
the heuristic that similarly named fields are more likely to be used similarly than
other fields. This filter compares peer fields with fn, and removes any field whose
naming pattern is different from fn’s. We observed two naming patterns that
developers usually followed when defining fields.

– Pattern 1: The names of constant fields (e.g., static final) capitalize all
involved letters, such as MAX OVERFLOW ONLY REC SIZE.

– Pattern 2: The names of variable fields use lowercase or a combination of
lowercase and uppercase letters, such as outputPrecision.

We rely on the naming patterns to classify fields as variables or constants. If
fn is a variable, it is likely to be similarly used to existing variable fields, so we
filter out the constant peers in P . Similarly, if fn is a constant, we can use the
constant peers to suggest fn’s usage, and remove variable peers from P .

4.3 Access-Based Filtering

This filter implements another heuristic that similarly accessed fields are more
likely to have similar usage. For each method, we classify the accessed fields into
three access modes: pure read, pure write, and read-write, depending on
how each field is accessed. For instance, if a method reads and writes a field,
we put the field into the “read-write” category of that method. To implement
the filter, CMSuggester scans the internal representation (IR) of each CM’s old
version created by WALA [10], and checks if an accessed field serves as a left or
right value of each IR instruction. If the field serves as a right value, it is read
by an instruction; otherwise, it is written. When a field’s access mode is distinct
from that of fn, CMSuggester removes the field from P .

4.4 Peer-Based Method Search

With the refined fields, CMSuggester searches for methods to co-change by iden-
tifying any unchanged method that accesses at least two refined fields. In the
search, CMSuggester scans a large portion of code, because a program revision
usually changes a small portion of code while keeping the majority code un-
changed [32]. To improve the search efficiency, we leveraged the access modifiers
of fn to reduce search space. Specifically, if fn is a private field, only the meth-
ods declared by fn’s declaring class C are analyzed because fn is not visible to
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Fig. 3: The distribution of AFs based on the number of corresponding CMs

any method outside C. Similarly, if fn is a protected field, only the methods
declared in C and C’s subclasses are analyzed. In the worst case, when a field
fn is a public field, it is visible to any method in the whole project; thus, we
cannot reduce the search space, but instead scan all unchanged methods.

5 Evaluation

This section explains our data set (Section 5.1) and presents our defined metrics
to evaluate CMSuggester’s effectiveness (Section 5.2). The experiments discussed
in Section 5.3-5.4 were designed to explore the following two research questions:

– RQ1: What is CMSuggester’s effectiveness to predict methods for change,
and how does it compare with ROSE?

– RQ2: How does CMSuggester’s effectiveness vary with the two used filters?

5.1 Data Set

We created an evaluation data set based on the data of our prior work [28].
We searched for any *CM→AF edit that (1) contains at least two methods co-
changed for an added field, and (2) has each changed method accessing at least
two existing fields. In this way, we found 10 commits, 45 commits, 42 commits,
and 9 commits separately in the revision data of Aries, Cassandra, Derby, and
Mahout, among which each commit contains one or more *CM→AF edits.
Figure 3 shows the distribution of added fields (AFs) based on the number of
changed methods (CMs) corresponding to them. Each commit has one or more
added AFs, in which each AF is related to 2-13 CMs. In particular, among the
9 commits from Mahout, there are 21 AFs applied. 19 of these AFs have 2 CMs
co-applied; while each of the other 2 AFs are co-applied with 4 CMs.
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For each AF, we constructed suggestion tasks by providing the AF and some
of its co-applied CMs to CMSuggester as input, and using the remaining part as
the oracle to evaluate CMSuggester’s output. For instance, suppose that a com-
mit has one added field fn and two changed methods M = {m1,m2}. In one task,
we provide fn and m1 to CMSuggester, and check whether CMSuggester sug-
gests m2 for change. Alternatively, we can provide fn and m2 to CMSuggester,
and check whether CMSuggester’s output is m1. In this way, if a *CM→AF edit
has one AF and n CMs (n ≥ 2), we can create n one-AF-one-CM (1A1C)
tasks based on the edit. In each task, only one AF and one CM are provided as
input, and all the other CM(s) is/are treated as the expected output. Similarly,
we can create one-AF-two-CM (1A2C) and one-AF-three-CM (1A3C)
tasks. As the majority of AFs in our data set correspond to 2-4 CMs, our exper-
iments mainly focus on 1A1C, 1A2C, and 1A3C tasks, as shown in Table 2.

Table 2: Evaluation data set

Aries Cassandra Derby Mahout Total #

# of program commits 10 45 42 9 106

# of 1A1C suggestion tasks 39 172 151 46 408

# of 1A2C suggestion tasks 9 237 168 12 426

# of 1A3C suggestion tasks 4 379 366 8 757

5.2 Metrics

We defined and used four metrics to measure a tool’s capability of suggesting
methods for change: coverage, precision, recall, and F-score. We also defined
the weighted average to measure a tool’s overall effectiveness among all subject
projects for each of the metrics mentioned above.

Coverage (C) measures the percentage of tasks for which a tool is able to
provide suggestion. Given a task, a tool may or may not suggest any change to
complement the already-applied edit, so this metric assesses a tool’s applicability.

C =
# of tasks with a tool’s suggestion

Total # of tasks
∗ 100% (1)

Intuitively, if a tool always suggests something given a task, its coverage is 100%,
and thus the tool is widely applicable. All our later evaluations for precision,
recall, and F-score are limited to the tasks covered by a tool. For instance,
suppose that given 100 tasks, a tool can suggest changes for 8 tasks. Then the
tool’s coverage is 8/100 = 8%, and the evaluations for other metrics are based on
these 8 tasks instead of the original 100 tasks.

Precision (P) measures among all methods suggested by a tool, how many
of them are correct:

P =
# of correct suggestions

Total # of suggestions by a tool
∗ 100% (2)
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This metric evaluates how precisely a tool suggests changes. If all suggestions
by a tool are contained by the oracle or expected output, the precision is 100%.

Recall (R) measures among all the expected suggestions, how many of them
are actually reported by a tool:

R =
# of correct suggestions by a tool

Total # of expected suggestions
∗ 100% (3)

This metric assesses how effectively a tool retrieves the expected outcome. Intu-
itively, if all expected suggestions are reported by a tool, the recall is 100%.

F-score (F) measures the accuracy of a tool’s suggestion:

F =
2 ∗ P ∗R

P +R
∗ 100% (4)

F-score is the harmonic mean of precision and recall. Its value varies within [0%,
100%]. The higher F values are desirable, as they demonstrate better trade-offs
between the precision and recall rates.

Weighted Average (WA) measures a tool’s overall effectiveness among
all experimented data in terms of coverage, precision, recall, and F-score:

Γoverall =
∑

4
i=1 Γi ∗ ni

∑
4
i=1 ni

. (5)

In the formula, i varies from 1 to 4, representing Aries, Cassandra, Derby, and
Mahout in sequence. ni represents the number of tasks built from the ith project.
Γi represents any measurement value of the ith project for coverage, precision,
recall, or F-score. By combining such measurement values of all projects in a
weighted way, we are able to assess a tool’s overall effectiveness Γoverall.

5.3 Comparison with ROSE

To assess CMSuggester’s capability of suggesting complementary changes, we
used CMSuggester to complete the tasks mentioned in Table 2 (i.e., 1A1C, 1A2C,
and 1A3C). To understand how CMSuggester is compared with prior work, we
also executed the state-of-the-art co-change suggestion tool, ROSE [33], for the
same tasks. ROSE mines the association rules between co-changed entities from
software version histories. Below presents an exemplar rule mined by ROSE [33]:

{( Qdmodule.c, func,GrafObj getattr())}⇒
{ (qdsupport.py, func, outputGetattrHook()).}

(6)

This rule means that whenever the function GrafObj getattr() in a file Qdmodule.c
is changed, the function outputGetattrHook() in another file qdsupport.py should
also be changed. We configured ROSE with support=1, confidence=0.1, because
the paper [33] mentioned this setting more often than other settings.

Table 3: CMSuggester vs. ROSE for 1A1C tasks (%)

Project
CMSuggester ROSE
C P R F C P R F

Aries 51 68 85 76 31 35 39 37
Cassan-

dra
69 81 75 78 38 53 71 61

Derby 71 71 68 69 22 25 42 31
Mahout 72 72 68 70 13 5 33 9

WA 68 75 72 73 29 41 58 48

Table 3 shows the re-
sults of CMSuggester and
ROSE for 1A1C tasks.
Overall, CMSuggester ob-
tained higher measure-
ment values for all the
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projects than ROSE. Par-
ticularly for Mahout, CM-
Suggester predicted likely
changes for 72% of the
tasks, while ROSE pro-
vided predictions for 13% of the tasks. Among the generated suggestions, CM-
Suggester achieved 72% precision, 68% recall, and 70% F-score; while ROSE
obtained 5% precision, 33% recall, and 9% F-score. CMSuggester’s weighted av-
erage values for coverage, precision, recall, and F-score are 68%, 75%, 72%, and
73%, while ROSE’s corresponding weighted average values are 29%, 41%, 58%,
and 48%.

AF	
	namedVector	

CM	
	reduce(…)	

CMSuggester	

ROSE	

Input	 Suggested	methods	
to	change	

Φ	(No	prediction)	

setup(…)	 ✔	
Peer	fields:	dimension,	
sequentialAccess,	normPower		

Fig. 4: A task for which CMSuggester outper-
formed ROSE

Two major reasons can ex-
plain why CMSuggester out-
performed ROSE. First, ROSE
uses the co-changed entities
in version histories to predict
likely changes. When the his-
tory data are incomplete or
some entities were never co-
changed before, ROSE lacks the
evidence to predict some co-
changes, obtaining lower coverage and recall rates. Second, ROSE does not lever-
age any syntactic or semantic relation between the co-changed entities. ROSE
can infer incorrect rules from co-changed but unrelated entities, achieving lower
precision.

Figure 4 presents a task for which CMSuggester outperformed ROSE. This
task is extracted from the commit 22d7d31 [9] of Mahout. In the task, there is one
AF PartialVectorMergeReducer.namedVector and one CM PartialVectorMerge-

Reducer.reduce(...) provided as input, and another CM provided as the ex-
pected output. CMSuggester succesfully predicted PartialVectorMergeReducer.

setup(...) based on the three peer fields extracted from the given CM. How-
ever, ROSE could not predict any method, because the version history did not
manifest any association rule between reduce(...) and setup(...).

AF	
	compactionStrategy		

CM	
	Session(…)

CMSuggester	

ROSE	

Input	 Suggested	methods	
to	change	

Φ	(No	prediction)	

createKeySpaces()		✔	

Fig. 5: A task for which ROSE outperformed
CMSuggester

Figure 5 shows a task for
which ROSE worked better
than CMSuggester. This task is
from the commit f06e1d6 [1] of
Cassandra. It provides one AF
Session.compactionStrategy and
one CM Session.Session(...)

as input, and includes another
CM as the oracle. CMSuggester
predicted nothing, because the identified peer fields in Session(...) are not com-
monly used by any unchanged method. However, ROSE correctly suggested one
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method Session.createKeySpaces(...). Our results show that CMSuggester can
complement ROSE by suggesting co-changes in a different way.

Finding 1: CMSuggester outperformed ROSE in many 1A1C tasks. This
means that CMSuggester complements ROSE by inferring co-changes
from methods’ common field accesses instead of from the history.

Table 4: CMSuggester vs. ROSE for 1A2C tasks (%)

Project
CMSuggester ROSE
C P R F C P R F

Aries 89 35 50 41 0 - - -
Cassandra 76 65 66 65 31 63 69 66

Derby 96 65 55 60 3 7 15 10
Mahout 100 35 39 37 0 - - -

WA 85 63 60 61 8 59 66 62

In addition to 1A1C
tasks, we also compared
CMSuggester with ROSE
for 1A2C and 1A3C tasks,
as shown in Tables 4 and
5. The tools have sim-
ilar F-scores. For 1A2C
tasks, CMSuggester ob-
tained 61% F-score, while
ROSE achieved 62%. For
1A3C tasks, the F-score
comparison is 61% vs. 60%. More importantly, CMSuggester obtained much
higher coverage rates than ROSE for both types of tasks. In Table 4, the cov-
erage comparison is 85% vs. 8%. For Aries and Mahout, CMSuggester achieved
89% and 100%, meaning that it predicted changes for the majority of tasks.
However, ROSE predicted nothing for either project. In Table 5, CMSuggester’s
coverage is 88%, while ROSE’s is 17%. Especially for Aries, Derby, and Mahout,
CMSuggester achieved 100% coverage, while ROSE covered 0% of the tasks.

Table 5: CMSuggester vs. ROSE for 1A3C tasks (%)

Project
CMSuggester ROSE
C P R F C P R F

Aries 100 12 25 16 0 - - -
Cassandra 75 56 62 59 33 57 64 60

Derby 100 66 61 63 0 0 0 -
Mahout 100 21 25 23 0 - - -

WA 88 61 61 61 17 57 63 60

The coverage compar-
isons in Tables 3, 4, and 5
show that given an arbi-
trary task, CMSuggester
is more likely to provide
suggestions than ROSE,
and the suggestion accu-
racy is at least compara-
ble to ROSE’s. Two rea-
sons can explain it. First,
ROSE is limited by the available historical co-change data. If certain methods
have never been changed together in history, ROSE can not find potential co-
changes between the methods. Second, when more CMs are provided, CMSug-
gester can detect more peer fields from more methods, and leverage the fields to
predict more. Suppose CMSuggester can predict changes M1 = {m1a,m1b, . . .}
based on CM1, and predict changes M2 = {m2a,m2b, . . .} based on CM2. Given
CM1 and CM2, CMSuggester predicts the joint set of M1 and M2 by outputting
Ms = {m1a,m2a,m1b,m2b, . . .}. However, ROSE always intersects the prediction
sets of individual CMs to ensure its prediction precision. Thus, with the CM1
and CM2, ROSE outputs Mr =M1 ∩M2, which covers less methods than Ms.



12 Y. Wang et al.

AF	
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Fig. 6: CMSuggester predicts better when more CMs are provided as input

Figure 6 presents two tasks from Cassandra, showing that when more CMs
are provided as input, CMSuggester can predict better. These tasks are from the
commit 7c32ffb [8], in which one AF and five CMs were applied by developers.
For the 1A2C task, CMSuggester was given one AF and two CMs. Since CMSug-
gester could not identify enough peer fields from the methods to predict changes,
it predicted nothing. In contrast, when CMSuggester was given one more CM
in the 1A3C setting, it was able to identify enough peer fields from the third
method MultiPartitionPager.state() and correctly suggested two methods.

Finding 2: For 1A2C and 1A3C tasks, when multiple CMs were provided
as input, CMSuggester outperforms ROSE by achieving better coverage
and at least comparable accuracy. Overall, CMSuggester works better than
ROSE when suggesting complementary changes for *CM→AF edits.

5.4 Sensitivity to Filter Settings

Two filters were used in CMSuggester to refine the peer fields. To understand how
each filter affects CMSuggester’s effectiveness, we built three variant approaches:

– CMSuggestero: We disabled both filters, and leveraged all detected peer fields
in the input CM(s) to predict changes.

– CMSuggestern: We only used the naming-based filter to refine peer fields
but disabled the access-based filter.

– CMSuggestera: We refined peer fields only with the access-based filter while
turning off the naming-based filter.

We applied all three variants to the 1A1C tasks. Table 6 presents the effec-
tiveness comparison between CMSuggester and the variants. According to this
table, CMSuggester obtained the lowest overall coverage (68%), but the highest
overall precision (75%), recall (72%), and F-score (73%). This is as expected,
because CMSuggester applied two filters to refine the detected fields as much
as possible. As a result, fewer fields passed both filters and suggested fewer but
more accurate changes. CMSuggestero achieved the highest coverage (91%) but
lowest F-score (68%). Since it did not refine peer fields before predicting changes,
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Table 6: CMSuggester vs. its three variant approaches with filters on or off (%)

Project
CMSuggester CMSuggestero CMSuggestern CMSuggestera
C P R F C P R F C P R F C P R F

Aries 51 68 85 76 77 70 83 76 72 70 86 77 56 67 86 75
Cassandra 69 81 75 78 88 78 76 77 80 81 74 77 75 79 76 77

Derby 71 71 68 69 97 63 60 61 94 66 63 64 73 67 64 65
Mahout 72 72 68 70 96 6 57 56 74 72 68 70 93 56 57 56

WA 68 75 72 73 91 69 68 68 84 73 70 71 75 71 70 70

some of the included peer fields are used less similarly to the newly added fields,
causing incorrect suggestions.

Compared with CMSuggestera, CMSuggestern obtained better coverage (84%
vs. 75%), better precision (73% vs. 71%), equal recall (both 70%), and better
F-score (71% vs. 70%). This is out of our expectation. Although the naming-
based filter seems more intuitive and is easier to implement than the access-mode
filter, it obtained a better trade-off among coverage, precision, and recall. This
may indicate that developers usually name fields in meaningful ways. Thus, the
similarity in fields’ names can more effectively indicate methods’ co-change re-
lationship than the similarity in access modes. When some fields are named
similarly, even though they are accessed divergently by one or more CMs, the
fields’ co-occurrence can still effectively predict methods for change.

Finding 3: Both filters used in CMSuggester effected to improve F-score
at the cost of coverage. Especially, the naming-based filter achieved a bet-
ter balance between F-score and coverage than the access-based filter.

6 Threats to Validity

Threats to External Validity. Our evaluation results show that CMSuggester
outperforms ROSE, as far as only one change pattern is concerned. However, as
our prior work [28] found more patterns, it is feasible to extend CMSuggester, and
we believe that CMSuggester can outperform ROSE in more cases. Furthermore,
based on our manual inspection, we believe that our patterns are not specific to
only Apache projects, so CMSuggester can outperform ROSE, even if we select
projects from other open source communities as the subjects. In the future,
we will support more patterns and evaluate the tools on subjects from more
software repositories. We also plan to develop a hybrid approach of ROSE and
CMSuggester. By relating methods based on common field accesses and historic
co-change relationship, the hybrid approach is guaranteed to suggest changes
when either tool predicts something, and may provide more precise suggestions
if both tools’ outputs can cross-validate each other.

Threats to Construct Validity. When we prepared the golden standards,
we constructed suggestion tasks from manual fixes. Yin et al. [29] show that a
bug fix can be not fully correct, which can lose useful co-changes. It is possible
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that developers made mistakes when making some multi-entity edits. Therefore,
the imperfect evaluation data set based on developers’ edits may affect our as-
sessment for both CMSuggester and ROSE. We share this limitation with prior
work [33, 22, 27]. In the future, we plan to mitigate the problem by conducting
user studies with developers. By carefully going through the edits made by de-
velopers and the complementary changes suggested by CMSuggester or other
tools, we can further evaluate the usefulness of different tools’ suggestions.

7 Related Work

Our research is related to co-change mining, automatic change recommendation,
and automatic program repair.

Co-Change Mining. Tools were built to mine version histories for co-
change patterns [12, 13, 26, 33, 30]. Specifically, Gall et al. mined release data for
the co-change relationship between subsystems [12] and classes [13]. Shirabad et
al. trained a machine-learning model to predict whether two given files should
be changed together [26]. However, none of these approaches analyze any syntac-
tic or semantic relationship between co-changed modules. Hassan et al. created
a framework to predict change propagation based on the historical co-changes,
caller-callee relationship of methods, def-use relationship of fields, and/or enti-
ties’ co-occurrence in the same file [14]. They found that the historic co-changes
had better prediction capability than other types of information. Instead of min-
ing software repositories, CMSuggester identifies co-changed methods based on
the commonly accessed fields, and complemented above-mentioned approaches
when the revision history is limited or unavailable.

Change Recommendation Systems. Researchers built tools to recom-
mend code changes [19, 17, 23, 22]. For instance, PR-Miner was created to mine
the implicit API invocation rules (e.g., lock() and unlock should be called to-
gether), to detect any code violating the rules, and to suggest changes that com-
plement existing API invocations [19]. Clever is a tool tracking all clone groups
in software and monitoring for edits on clones [23]. If one clone is detected to
be updated, Clever lists all its clone peers, and recommends relevant changes.
These approaches recommend changes based on either the co-occurrence of APIs
or code similarity. In comparison, CMSuggester recommends changes based on
the common field accesses between methods.

Automatic Program Repair (APR). There are tools proposed to gener-
ate candidate patches for certain bugs, and automatically check patch correctness
using compilation and testing [18, 16, 21, 20, 31]. For example, GenProg [18] gen-
erated candidate patches by replicating, mutating, or deleting code randomly
from the existing programs. Genesis trained a machine-learning model by ex-
tracting features from existing bug fixes, and suggesting candidate patches ac-
cordingly [20]. CMSuggester is different from APR in two aspects. First, CM-
Suggester focuses on multi-entity changes by suggesting method changes to com-
plement already-applied edits. However, APR focuses on single-entity changes
by creating single-method updates from scratch. Second, CMSuggester locates
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methods to change, while APR approaches generate concrete and applicable
statement-level changes as a candidate fix. We believe that CMSuggester is valu-
able because it is challenging to locate places to change in large codebases, and
it needs to locate such places, before APR tools can generate changes.

8 Conclusion

When developers change multiple entities simultaneously for one maintenance
task, it can be challenging for them to identify all relevant entities to edit. This
paper presents CMSuggester, a novel approach that suggests complementary
changes for multi-entity edits. Different from prior work that relates co-changed
methods based on their historic co-change relationship or similar program con-
texts, CMSuggester takes a different perspective by modeling the common field
accesses between methods. Our evaluation shows that CMSuggester outperforms
ROSE when suggesting complementary changes for *CM→AF edits—a type of
frequently applied complex changes. Since ROSE can work well in certain sce-
narios where CMSuggester does not suggest changes, we plan to explore a hybrid
approach between the tools in the future. To better characterize the strength-
ens and weaknesses of different tools, we will also apply CMSuggester and other
tools to suggest changes for more types of multi-entity edits.
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