The Symptom, Cause and Repair of Workaround

Daohan Song, Hao Zhong, and Li Jia
Department of Computer Science and Engineering, Shanghai Jiao Tong University
251287012@qq.com,zhonghao@sjtu.edu.cn,insanelung@sjtu.edu.cn

ABSTRACT

In software development, issue tracker systems are widely used to
manage bug reports. In such a system, a bug report can be filed,
diagnosed, assigned, and fixed. In the standard process, a bug can
be resolved as fixed, invalid, duplicated or won’t fix. Although the
above resolutions are well-defined and easy to understand, a bug
report can end with a less known resolution, i.e., workaround. Com-
pared with other resolutions, the definition of workarounds is more
ambiguous. Besides the problem that is reported in a bug report, the
resolution of a workaround raises more questions. Some questions
are important for users, especially those programmers who build
their projects upon others (e.g., libraries). Although some early
studies have been conducted to analyze API workarounds, many
research questions on workarounds are still open. For example,
which bugs are resolved as workarounds? Why is a bug report
resolved as workarounds? What are the repairs of workarounds?
In this experience paper, we conduct the first empirical study to
explore the above research questions. In particular, we analyzed
221 real workarounds that were collected from Apache projects.
Our results lead to some interesting and useful answers to all the
above questions. For example, we find that most bug reports are
resolved as workarounds, because their problems reside in libraries
(24.43%), settings (18.55%), and clients (10.41%). Among them, many
bugs are difficult to be fixed fully and perfectly. As a late breaking
result, we can only briefly introduce our study, but we present a
detailed plan to extend it to a full paper.

ACM Reference Format:

Daohan Song, Hao Zhong, and Li Jia. 2020. The Symptom, Cause and Repair
of Workaround. In 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE "20), September 21-25, 2020, Virtual Event, Aus-
tralia. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3324884.
3418910

1 INTRODUCTION

In software development, issue tracker systems (e.g., JIRA [1]) are
widely used to manage bug reports. As introduced by Zeller [14]
and Jeong et al. [11], from tracker systems, a bug report can be
filed, diagnosed, assigned, and fixed. In the standard process, a bug
report typically is resolved as fixed, invalid, duplicated or won’t
fix. The above resolutions are clearly defined, and users can make
their choices based these resolutions. Although it is less known,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °20, September 21-25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09....$15.00
https://doi.org/10.1145/3324884.3418910

a bug report can end as a workaround. By its literal definition, a
workaround is a way in which a problem is resolved or avoided,
when the most obvious solution is not possible. After reading this
definition, the resolutions of workarounds still raise questions be-
sides what are already reported in bug reports. For example, are
the problems fixed or not? If a problem is literally avoided, is it a
technical debt [13]? Why are bug reports resolved as workarounds
at the first place? The questions hinder users from making a good
decision, when handling workarounds.

As API libraries are widely used, most software projects are
built upon libraries. If a workaround occurs in a library, it can
lead to far-reaching impacts on its downstream projects, and a
workaround on an API can reveal problems of its upstream projects.
As API workarounds have notable impacts on programmers, re-
searchers have conducted some early studies on API workarounds.
For example, Bogart et al. [9] report that users can intentionally
modify or bypass a problematic API as a workaround. As another
example, Lamothe and Shang [12] summarize four patterns on API
workarounds, by recreating the workarounds of 40 Stack Overflow
posts. However, these studies did not touch workarounds as a re-
search problem in the general software development. Even for API
workarounds, many questions are still open after their studies. For
example, besides the four patterns that were extracted by Lamothe
and Shang [12], are there other patterns? To deepen the knowl-
edge on workarounds, in this paper, we conduct the first empirical
study on workarounds in general software devolvement. Our study
explores the following research questions:

RQ1. What symptoms can be repaired as workarounds?
This research question concerns which types of bugs can be resolved
as workarounds, and we classify bug types by their symptoms.

RQ2. Why are bug reports resolved as workarounds? This
research question concerns the causes of workarounds.

RQ3. How to repair bugs in the way of workarounds? This
research question explores where the repairs are and why the re-
pairs resolve a bug.

2 METHODOLOGY

Dataset. To collect the dataset, we search the Apache JIRA [1] for
bug reports whose resolutions are workarounds and statuses are
either resolved or closed. In total, we collected 221 workarounds
from 88 Apache projects. The size of our dataset is more than those
of other related empirical studies. For example, Zhang et al. [15]
analyzed 175 tensorflow [2] bugs, and Lamothe and Shang [12]
analyzed 40 Stack Overflow posts.

Protocol. In our study, three authors manually inspected all the
workarounds. All of them have rich experience in developing soft-
ware and are familiar with bug tracking systems. Following the
protocols, they inspected the bugs independently, and compared
the results for differences. If any result is inconsistent, they contact

https://doi.org/10.1145/3324884.3418910
https://doi.org/10.1145/3324884.3418910
https://doi.org/10.1145/3324884.3418910

ASE °20, September 21-25, 2020, Virtual Event, Australia

40

20

<& (c) repair

Figure 1: The categories of workarounds

programmers by sending emails or directly discussing on bug re-
ports. For example, they asked programmers on a workaround [3].
A programmer named Makoto Yui confirmed that this bug is caused
by the memory requirements of Spark [4] and they have fixed this
problem. In each RQ, we analyzed the 221 workarounds according
to its corresponding protocol. In RQ1, RQ2, and RQ3, after we deter-
mine the categories of all workarounds, the percent of a category A
is calculated as %, where Ny is the number of workarounds in
category A, and Nj; is the number of all workarounds, i.e., 221. In
RQ1, a workaround is put into exactly one category, so the sum of
its percents is exactly one. In RQ2 and RQ3, several workarounds
are classified into multiple categories, so the sums of their percents
are more than one.

3 EMPIRICAL RESULTS

The details are listed on our anonymous project website:
https://anonymous.4open.science/r/7f52d2b5-4015-46b2-90e3-6750a078bcced/
Answer to RQ1: As shown in Figure 1a, crashes (41.18%), unex-

pected behaviors (31.67%), and build and testing errors (17.65%) are

often resolved as workarounds.
Answer to RQ2: As shown in Figure 1b, most bug reports are
resolved as workarounds, because their problems reside in libraries

Daohan Song, Hao Zhong, and Li Jia

(24.43%), settings (18.55%), and clients (10.41%). We notice that these
bug reports are often difficult to be fixed fully and perfectly.

Answer to RQ3: As shown in Figure 1c, the repairs of workarounds
are more diverse than their symptoms and causes. Most workarounds
modify the settings (20.36%), build files (11.76%), API calls (8.60%),
and settings of libraries (8.14%).

As the first study on general workarounds, we have presented
the distributions of workarounds for the first time. Even for API
workarounds, we found some new results. Lamothe and Shang [12]
reported four types of API workarounds by their repairs. Their
first type, functionality extensions, corresponds to our “overridden
APIs”; their second type, deep copies, corresponds to our “deep
copying”; and we do not find the correspondences for their other
two types such as multi-versions and unnecessary workarounds.
From the perspective of causes, API workarounds are caused by
problems in libraries. The patterns of the prior study [12] are less
common in real projects (0.90% for functionality extensions and
2.71% for deep copies), because they can introduce incompatible is-
sues. For example, if programmers modify the code [9] or deep copy
the code [12] of a library, their client code becomes incompatible
with new versions of the library, which can cause many problems.
Instead, programmers more tend to switch to other versions of
libraries or change their settings to resolve such bugs. For example,
NiFi Registry [5] is a project to store and manage shared resources.
A bug report [6] of NiFi Registry complains a crash with JRE. A
programmer of Nifi Registry explains that NiFi Registry must call
JDK rather than JRE, and resolves this problem. As another example,
Solr [7] is an open source search platform. A bug report [8] of Solr
complains a hang. A Programmer determines that a problem occurs
when JDBC is stuck in the middle of a read, and finds that increasing
oracle. jdbc.ReadTimeout can relieve the problem.

4 CONCLUSION AND RESEARCH PLAN

To extend our work to a full paper, our research plan is as follows:

1. Presenting illustrative examples. Due to space limit, we
cannot present examples in this paper. When extending it to a full
paper, we will present at least one illustrative example for each cat-
egory, in that such examples are useful to understand workarounds.

2. Presenting more analysis details. We will write a separate
protocol for each research question. The added details are useful to
replicate our study on other datasets.

3. Analyzing workarounds in more details. We plan to en-
rich our study from three perspectives: (1) the correlations of symp-
toms, causes, and repairs [10]; (2) the evolution of workarounds;
and (3) the relation between technical debts and workarounds.

4. Interpreting our findings. We will present actionable ad-
vises: (1) based on our findings, half of workarounds can be avoided
by better interfaces, and (2) our results can provide insights on how
to improve the infrastructures of OSS (e.g., issue trackers).

ACKNOWLEDGEMENT

We appreciate the anonymous reviewers for their insightful com-
ments. Hao Zhong is the corresponding author. This work is spon-
sored by the National Key R&D Program of China No. 2018YFC083050.

https://anonymous.4open.science/r/7f52d2b5-4015-46b2-90e3-6750a078bccd/

The Symptom, Cause and Repair of Workaround ASE ’20, September 21-25, 2020, Virtual Event, Australia

REFERENCES [10] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
[1] https://issues.apache.org/jira, 2020. Kaufmann Pul')hshers, 201.1‘
[2] https://github.com/tensorflow?, 2020. [11] G.Jeong, S. Kim, and T. Zimmermann. Improving bug triage with bug tossing
[3] https://issues.apache.org/jira/browse/HIVEMALL-30, 2020. graphs. In Proc. ESEC/FSE, page 111-120, 2009.

[4] https://spark.apache.org/, 2020. [12] M.Lamothe and W. Shang. When apis are intentionally bypassed: An exploratory

[5] http:/nifi.apache.org/registry.html, 2020. study of api .workarounds. In Proc. ICSE, page to appear, 2020.

[6] https://issues.apache.org/jira/browse/NIFIREG-142, 2020. [13] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang. Automating change-level self-

[7] https://lucene.apache.org/solr/, 2020. admitted technical debt determination. IEEE Transactions on Software Engineering,

[8] https://issues.apache.org/jira/browse/SOLR-6209, 2020. 45(12):1211-1229, 2018.

[9] C.Bogart, C. Kastner, J. Herbsleb, and F. Thung. How to break an API: cost nego- [14] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier, 2006.
[15] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang. An empirical study on

tiation and community values in three software ecosystems. In Proc. ESEC/FSE,
pages 109-120, 2016. TensorFlow program bugs. In Proc. ISSTA, pages 129-140, 2018.

https://issues.apache.org/jira
https://github.com/tensorflow/
https://issues.apache.org/jira/browse/HIVEMALL-30
https://spark.apache.org/
http://nifi.apache.org/registry.html
https://issues.apache.org/jira/browse/NIFIREG-142
https://lucene.apache.org/solr/
https://issues.apache.org/jira/browse/SOLR-6209

