
An Empirical Study on Bugs inside TensorFlow

Li Jia1, Hao Zhong1?, Xiaoyin Wang2, Linpeng Huang1, and Xuansheng Lu1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
2 Department of Computer Science, University of Texas at San Antonio

{insanelung,zhonghao,huang-lp,luxuansheng}@sjtu.edu.cn,
xiaoyin.wang@utsa.edu

Abstract. In recent years, deep learning has become a hot research
topic. Although it achieves incredible positive results in some scenarios,
bugs inside deep learning software can introduce disastrous consequences,
especially when the software is used in safety-critical applications. To
understand the bug characteristic of deep learning software, researchers
have conducted several empirical studies on deep learning bugs. Although
these studies present useful findings, we notice that none of them analyze
the bug characteristic inside a deep learning library like TensorFlow. We
argue that some fundamental questions of bugs in deep learning libraries
are still open. For example, what are the symptoms and the root causes
of bugs inside TensorFlow, and where are they? As the underlying library
of many deep learning projects, the answers to these questions are useful
and important, since its bugs can have impacts on many deep learning
projects. In this paper, we conduct the first empirical study to analyze the
bugs inside a typical deep learning library, i.e., TensorFlow. Based on our
results, we summarize 5 findings, and present our answers to 2 research
questions. For example, we find that the symptoms and root causes of
TensorFlow bugs are more like ordinary projects (e.g., Mozilla) than
other machine learning libraries (e.g., Lucene). As another example, we
find that most TensorFlow bugs reside in its interfaces (26.24%), learning
algorithms (11.79%), and how to compile (8.02%), deploy (7.55%), and
install (4.72%) TensorFlow across platforms.

1 Introduction

In recent years, deep learning has been a hot research topic, and researchers
have used deep learning techniques to solve the problems in various research
fields such as graph classification [35], computer vision [24,38], speech recognition
[49], natural language processing [55] and software analysis [32,51]. Specifically,
in the research community of databases, deep learning techniques and database
techniques have promoted each other in various perspectives. On one hand, deep
learning techniques are employed to handle various database problems (e.g.,
tuning database configurations with a deep reinforcement learning model [36]).
On the other hand, database techniques are be used to improve deep learning
systems (e.g., optimizing neural networks [50]).

? corresponding author

2 L. Jia et al.

When implementing deep learning applications, instead of reinventing wheels,
programmers often build their applications on mature libraries. Among these
libraries, TensorFlow [20] is the most popular, and a recent study [54] shows
that more than 36,000 applications of GitHub are built upon TensorFlow. As
they are popular, one bug inside deep learning libraries can lead to bugs in many
applications, and such bugs can lead to disastrous consequences. For example,
Pei et al. [41] report that a Google self-driving car and a Tesla sedan crash, due
to bugs in their deep learning software.

To better understand bugs of deep learning programs, researchers have con-
ducted empirical studies on such bugs. In particular, Zhang et al. [54] conducted
an empirical study to understand the bugs of TensorFlow clients. Here, a client
of TensorFlow is a program that calls the APIs of TensorFlow. While Zhang et
al. [54] analyzed only TensorFlow clients, Islam et al. [33] analyzed the clients
of more deep learning libraries such as Caffe [34], Keras [19], Theano [23], and
Torch [26]. Although their results are useful to improve the quality of a specific
client, to the best of our knowledge, no prior studies have ever explored the bugs
inside popular deep learning libraries. Although the bugs inside TensorFlow in-
fluence thousands of its clients, many questions on such bugs are still open. For
example, what are the symptoms and the root causes of such bugs, and where
are they? A better understanding on such bugs will improve the quality of many
clients, but it is challenging to conduct the desirable empirical study, since Ten-
sorFlow implements many complicated algorithms and is written in multiple
programming languages. In this paper, we conduct the first empirical study to
analyze the bugs and their fixes inside TensorFlow, and we present our answers
to the following research questions:

– RQ1. What are the symptoms and causes of bugs in TensorFlow?
Motivation. The symptom and the root cause of a bug are important to
understand and to fix the bug. For deep learning bugs, the results of the
prior studies [54,33] are incomplete, because they analyze only deep learn-
ing clients. As the prior studies did not analyze bugs inside a deep learning
library like TensorFlow, the answers to the above research question are still
unknown.
Major results. In total, we identify six symptoms and eleven root causes
for the bugs inside TensorFlow. We find that root causes are more determi-
native than symptoms, since several root causes have dominated symptoms
(Finding 1). In addition, we find that the symptoms and the root causes
of TensorFlow bugs are more like those of ordinary projects (e.g., Mozilla)
than other machine learning libraries (Finding 2). For the symptoms, build
failures have correlations with inconsistencies, configurations and referenced
type errors, and warning-style bugs have correlation with inconsistencies,
processing, and type confusions. For the root causes, dimension mismatches
lead to functional errors, and type confusions have correlation with func-
tional errors, crashes, and warning-style errors (Finding 3).

An Empirical Study on Bugs inside TensorFlow 3

– RQ2. Where are the bugs inside TensorFlow?
Motivation. From the perspective of TensorFlow developers, the locations
of its bugs are important to improve the quality of TensorFlow. From the
perspectives of the programmers of TensorFlow clients, they can be more
careful to call TensorFlow, if they know such locations. From the perspective
of researchers, they can design better detection techniques for our identified
bugs, after the locations of target bugs are known. The prior studies [54,33]
did not explore this research question.
Major results. To explore the bug characteristics in different library com-
ponents, we analyze TensorFlow bugs by location. We find that major re-
ported bugs reside in deep learning algorithms (kernel, 11.79%) and their
interfaces (API, 26.42%). The two categories of bugs are followed by bugs in
the deployment such as compiling (lib, 8.02%), deploying (platform, 7.55%),
and installing (tools, 4.72%). The other components such as runtime (3.77%),
framework (0.94%) and computation graph (0.94%) have fewer bugs.

This paper presents an empirical research. The purpose of an empirical study
is to answer open questions on important issues, which can enrich the knowl-
edge and motivate the follow-up research. Empirical studies have been widely
conducted in various research fields such as software error analysis [28,30], op-
erating system design [45,25], database management [39,21] and information
security [29,27]. As open questions are too complicated to be automated, like
ours, some empirical studies are conducted manually, especially for those on the
bug characteristics [46,54].

2 Methodology

2.1 Dataset

We select TensorFlow as the subject of our study, since Zhang et al. [54] report
that more than 36,000 GitHub projects call the APIs of TensorFlow. As a result,
the bugs inside TensorFlow influence thousands of its clients. In total, we analyze
202 TensorFlow bug fixes repaired between December 2017 and March 2019, and
84 of them have corresponding bugs reports. The number is comparable to other
empirical studies. For example, Thung et al. [47] analyze 500 bugs from machine
learning projects such as Mahout, Lucene, and OpenNLP. For each project, they
analyze no more than 200 bugs. As another example, Zhang et al. [54] analyze
175 bugs from TensorFlow clients. We apply the following steps to extract bugs:
Step1. Filtering pull requests by labels To avoid problems which have not
been handled correctly and to collect accurate information about fixed bugs, we
start with closed pull requests with label “ready to pull”. We notice that finished
pull requests before a specific date are not tagged, so we also collect cases from
earlier closed pull requests by searching keywords as described in Step 2. We
manually check each collected pull request to ensure that its commit is already
approved by reviewers and is merged into the master branch.

4 L. Jia et al.

Step2. Searching pull requests by keywords From closed pull requests, we
use the keywords such as “bug”, “fix” and “error” to identify the ones that fix
bugs. From bug fixes, we use the keywords such as “typo” and “doc” to remove
the ones that fix superficial bugs. From the remaining bug fixes, we manually
inspect them to select real ones, by reading their bug reports and code changes
carefully. In total, we selected 300 bug fixes for latter analysis.
Step3. Extracting bug reports and code changes. For each one of the 300
bug fixes, we extract its bug report and code changes. The extracted results are
used to determine their symptoms, root causes (RQ1), and locations (RQ2). We
introduce the detailed analysis in Section 2.2.

2.2 Manual Analysis

In our study, we employ two graduate students to manually inspect all bugs. The
two students major in computer science, and both are familiar with deep learning
algorithms. They have experience in developing deep learning applications (e.g.,
mining on business data) based on TensorFlow. Following our protocols, the two
students inspect the bugs independently, and compare the results. If we cannot
reach a consensus on a TensorFlow bug, they discuss it on our group meetings.

Protocol of RQ1 When they build their own taxonomy of bug symptoms
and their root causes, they refer to the taxonomies of the prior studies [22,46].
In particular, they add an existing category into their taxonomy, if they find
a TensorFlow bug falls into this category. If a TensorFlow bug does not be-
long to an existing category, they try to modify a similar category of the prior
studies [22,46]. If they fail to find such a similar category, they add a new one.

For bug classifying, if a pull request has a corresponding bug report, they first
read its report to identify its symptoms and root causes. If a pull request does
not provide a report, they manually identify its symptom and root cause from
the description, bug-related discussion, code changes and comments of the pull
request. For example, a bug fix without report [18] is titled “Fix for stringpiece
build failure”. Based on the title, they determine that the symptom of the bug
is build failure. They notice that the only code modification of this bug fix is:

1 void Append(S t r ingP i e c e s) {
2 − key . append (s . ToString ()) ;
3 + key . append (s t r i n g (s)) ;
4 key . append (1 , d e l i m i t e r) ; }

The buggy version calls the ToString() method to build the key. In the fixed
version, the string(StringPiece) method is called to build the correct key, but in
the old location, the method call is not updated. Considering this, they determine
that the root cause of the bug is the inconsistency.

After the symptoms and root causes of all the bugs are extracted, the two
students further classify them into categories, and use the lift function [31] to
measure the correlations between symptoms and root causes. According to the
definition, the lift between different categories A and B is computed as:

An Empirical Study on Bugs inside TensorFlow 5

lift(A,B) =
P (A ∩B)

P (A) · P (B)
(1)

where P (A), P (B), P (A∩B) are the probabilities that a bug belongs to category
A, category B, and both A and B. If a lift value is greater than one, category
A and B are correlated, which means a symptom is correlated to a root cause.
If it is equal to or less than one, a symptom is not correlated to a root cause.

Protocol of RQ2 In this research question, the two students analyze the loca-
tions of bugs. As an open source project, TensorFlow does not officially list its
components, but like other projects, TensorFlow puts its source files into differ-
ent directories, by their functionalities. When determining their functionalities,
they refer to various sources such as official documents, TensorFlow tutorials,
and forum discussions. Their identified components are as following:

1. Kernel. The kernel implements the core deep learning algorithms (e.g., the
conv2d algorithm), and its source files are located in the core/kernels directory.

2. Computation graph. TensorFlow uses computation graphs to define and to
manage its computation tasks. The graph implements the definition, construc-
tion, partition, optimization, operation, and execution of computations. Most
source files of this component are located in the core/graph directory; its data
operations are located in the core/ops directory; and its optimization-related
source files are located in the core/grappler directory.

3. API. TensorFlow provides APIs in various programming languages (e.g.,
Python, C++, Java), which are located in the python, c, cc and java directories.

4. Runtime. The runtime implements the management of sessions, thread pools,
and executors. TensorFlow has a common runtime (core/common runtime) and a
distribution runtime (core/distributed runtime). Common runtime supports the
executions on a local machine, and distribution runtime allows to deploy Ten-
sorFlow on distributed ones. For simplicity, we merge them into one component.

5. Framework. The framework implements basic functionalities (e.g., logging,
memory, and files). Most source files of this component are located in core/frame-

work directory, and the serialization is located in core/protobuf directory.

6. Tool. The tool implements utilities. For example, tools/git and tools/pip-

package directories implement the utilities to install TensorFlow; the core/debug

directory provides a tool to debug TensorFlow clients; and the the core/profile

directory provides a tool to profile the execution of TensorFlow and its clients.

7. Platform. The platform allows to deploy TensorFlow on various platforms.
The core/platform directory contains the source files to handle hardware issues
(e.g., CPU and GPU); the core/tpu directory allows executing on TPU; the
lite directory allows executing TensorFlow on mobile devices; and the compiler

directory allows compiling to native code for various architectures.

8. Contribution. The contrib directory contains new features, and its source
files are often implemented by outside contributors. For example, the contrib/seq2seq

directory contains a sequence-to-sequence model that is widely used in neural

6 L. Jia et al.

translation. After they become mature, they can be merged into other directo-
ries. In our study, we define a component for this directory.
9. Library. The library includes the API libraries. Most libraries are located
in the third-party directory, and some libraries are located in other directories
(e.g, core/lib, core/util and some files under the root directory of tensorflow).
10. Documentation. The documentation includes samples, which are located
in the examples and core/example directories. It also includes other types of
documents. For example, the security directory stores security guidelines.

We use the lift metric as defined in Equation 1 to measure the correlation
between a bug location and a symptom or a root cause. Here, if a bug involves
more than one directory, we count them once for each directory to ensure that
each location does not lose a symptom and a root cause.

3 Empirical Result

This section presents the results of our study. More details are listed on our
anonymized project website: https://github.com/fordataupload/tfbugdata/

3.1 RQ1. Symptoms and Root Causes

The categories of symptoms 1. Functional error (35.64%). If a program
does not function as designed, we call it a functional error. For example, we find
that a bug report [2] complains the functionality of the tf.Print method:
If you print a tensor of shape [n, 4] with tf.Print, by default (summarize=3 is the default value),

you get: [[9 21 55]...], which wrongly looks like your tensor is of shape [n, 3]. The correct output

should be: [[9 21 55...]...].

The method is designed to print the details of tensors. The bug report com-
plains that it prints incorrect output, when the shape is [n, 4]. As the result is
not as expected, it is a functional error.
2. Crash (26.73%). A crash occurs, when a program stops and exits irregularly.
When it happens, the program often throws an error message. For example, a
bug report [4] describes a crash caused by an unsupported operand type:
Using a TimeFreqLSTMCell in a dynamic rnn without providing optional parameter frequency skip

results in an exception: TypeError: unsupported operand type(s) for /: ‘int’ and ‘NoneType’.

3. Hang (1.49%). A hang occurs, when a program keeps running without
stopping or responding. A bug report [17] provides description as below:
When running the above commands (Inception V3 synchronized data parallelism training with 2

workers and 1 external ps), the tf cnn benchmarks application hangs forever after some iterations

(usually in warm up).

4. Performance degradation (1.49%). A performance degradation occurs,
when a program does not return results in expected time. For example, we find
a performance degradation in a bug report [16]:
There is a performance regression for TF 1.6 comparing to TF 1.5 for cifar 10.

5. Build failure (23.76%). A build failure occurs in the compiling process.
For example, we find that a bug report [3] describes a build failure, which is
caused by a missing header file:

An Empirical Study on Bugs inside TensorFlow 7

Build failing due to missing header files “tensorflow/contrib/tpu/proto/tpu embedding config.pb.h”.

6. Warning-style error (10.89%). Warning-style error means the running of
a program is not disturbed, but modifications are still needed to get rid of risk or
improve code quality, including interfaces to be deprecated, redundant code and
bad code style. Most bugs in this category are shown by warning messages, while
a few others do not provide visible messages which are found by code review or
other events. For example, we find a bug in such category [11], since it calls a
method with a deprecated argument:
According to tf.argmax, dimension argument was deprecated, it will be removed in a future version.

The categories of root causes 1. Dimension mismatch (3.96%). We
put a bug into this category if it is caused by dimension mismatch in tensor
computations and transformations. A bug fix [14] describes the cause of a bug
in this category as:
Wrongly ”+1” for output shape, that will cause CopyFrom failure in MklToTf op because of tensor

size and shape mismatch.

The buggy code sets the dimension of an output tensor:

1 output t f shape .AddDim((output pd−>g e t s i z e () / s izeof (T)) + 1) ;

The fixed code sets the correct dimension:

1 output t f shape .AddDim((output pd−>g e t s i z e () / s izeof (T))) ;

2. Type confusion (12.38%). Type confusions are caused by the mismatches
of types. A sample report [12] is as below:
CRF decode can fail when default type of ”0” (as viewed by math ops.maximum) does not match

the type of sequence length.

After the bug was fixed, programmers modified a test case to ensure that the
method accepts more types of input values:

1 np . array (3 , dtype=np . in t32) ,
2 − np . array (1 , dtype=np . in t32)
3 + np . array (1 , dtype=np . in t64)

3. Processing (22.28%). We put a bug into this category, if it is caused by
wrong assignment or initialization of variables, wrong formats of variables, or
other wrong usages that are related to data processing. For example, we find a
bug report [8] in such category as follow:
ConvNDLSTMCell class in tensorflow.contrib.rnn cannot pass the name attribute correctly when

created, because of the missing parameter in constructor.

The constructor of ConvNDLSTMCell has no parameters to define their names:

1 super (Conv1DLSTMCell , s e l f) . i n i t (conv ndims=1, ∗∗kwargs)

The bug is fixed in a latter version:

1 super (Conv1DLSTMCell , s e l f) . i n i t (conv ndims=1, name=name , ∗∗
kwargs)

8 L. Jia et al.

4. Inconsistency (16.83%). We put a bug into this category, if it is caused
by incompatibility due to API change or version update. For example, a bug
report [7] complains that a removed ops is called:
NotFoundError: Op type not registered ’KafkaDataset’ in binary. is returned from kafka ops. The

issue was that the inclusion of kafka ops was removed due to the conflict merge from the other PR.

The above compilation error was caused by a conflict merge of two commits.
One removed kafka ops, but the other added a calls to the operator.
5. Algorithm (2.97%). We put a bug into the algorithm category, if it is
caused by wrong logic in algorithms. For example, a bug report [5] complains
that a method returns wrong values:
Input labels = tf.constant([[0., 0.5, 1.]]), predictions = tf.constant([[1., 1., 1.]]), the result of

tf.losses.mean pairwise squared error(labels, predictions) should be [(0 − 0.5)2 + (0 − 1)2 + (0.5 −

1)2]/3 = 0.5, but TensorFlow returns different value 0.333333.

According to the code document, the mean pairwise squared error is incor-
rectly calculated. In the process of deduction, the denominators of two inter-
mediate variables are wrong. A developer replaces an assignment and changes a
method with corresponding parameters to fix denominators as below:

1 − num present per batch)
2 + num present per batch −1)
3 . . .
4 + math ops . square (num present per batch))
5 − math ops . mult ip ly (num present per batch , num present per batch −1)

)

6. Corner case (15.35%). We put a bug into the this category, if it is caused
by erroneous handling of corner cases. A bug of this kind is reported [15] as:
When batch size is 0, max pooling operation seems to produce an unhandled cudaError t status. It

may cause subsequent operations fail with odd error message.

As the reporter says, a crash happens when batch size of the input is 0,
which belongs to corner cases.
7. Logic error (9.90%). We put a bug into this category, if mistakes happen
in the logic of a program. A logic error can be an incorrect program flow or a
wrong order of actions. A bug report [10] provides the description as:
When a kernel Variable is shared by two Conv2Ds, ... there will be only one Conv2D getting the

quantized kernel.

TensorFlow implements a mechanism called quantization to shrink tensors.
The reporter complains that when a tensor shares two Conv2D, the second one
cannot obtain the right quantized kernel. The logic of the code is flawed, in that
the program in complex flow does not behave as expected.
8. Configuration error (7.43%). We put a bug into this category, if it is
caused by wrong configuration. A sample bug [6] is as follow:
Linking of rule ’...toco’ fails because LD LIBRARY PATH is not configured.

To repair the bug, in a configuration file, programmers add the following
statement to initiate LD LIBRARY PATH:

1 i f ’LD LIBRARY PATH ’ in env i ron cp and env i ron cp . get (’
LD LIBRARY PATH ’) != ’ 1 ’ :

2 w r i t e a c t i o n e n v t o b a z e l r c (’LD LIBRARY PATH ’ , . . .)

An Empirical Study on Bugs inside TensorFlow 9

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%

Hang

Performance degradation

Warning-style error

Build failure

Crash

Functional error

Algorithm

Concurrency

Configuratio
n error
Corner case

Dimension
mismatch
Inconsistency

Logic error

(a) The distribution of symptoms
0.00% 5.00% 10.00% 15.00% 20.00%

Concurrency

Memory

Algorithm

Dimension mismatch

Referenced type error

Configuration error

Logic error

Type confusion

Corner case

Inconsistency

Processing

Hang

Performance degradation

Warning-style error

Build failure

Crash

Functional error

(b) The distribution of root causes

Fig. 1: Distribution of bug symptoms and root causes

9. Referenced types error (4.95%). We put a bug into this category, if it
is caused by missing or adding unnecessary include or import statements. A
bug [13] triggers the following error message:
The compiler couldn’t find std::function, because header file #include <functional> is missing.

Programmers forget to add the said include statement, which causes the bug.
10. Memory (2.97%). We put a bug into the memory category, if it is caused
by incorrect memory usages. For example, a bug report [9] describes a possi-
ble memory leak, which can be triggered by an exception, because of missing
deconstruction operation.
11. Concurrency (0.99%). We put a bug into this category, if it is caused by
synchronization problems. A bug report [1] describes a deadlock as follow:
notify one was used to notify inserters and removers waiting to insert and remove elements into

Staging Areas. This could result in deadlock when many removers were waiting for different keys.

As the reporter says, when multiple removers wait for keys but notify one

only notifies one of them, a deadlock may occur.

Distribution Figure 1a shows the distribution of symptoms. Its horizontal
axis shows symptom categories, and its vertical axis shows the percentage of
corresponding symptom. For each symptom, we refine its bugs by their root
causes. Tan et al. [46] report the distributions of Mozilla, Apache, and the Linux
kernel. We find that the distribution of TensorFlow is close to their distributions.
Figure 1a shows that functional errors account for 39%, which are the most
common bugs of TensorFlow. Tan et al. [46] show that in Mozilla, Apache, and
the Linux kernel, function errors vary from 50% to 70%. We find that crashes
account for 26.5% TensorFlow bugs, which are close to Linux (27.2%), and hangs
account for 1% bugs, which are close to Mozilla (2.1%).

Figure 1b shows the distribution of root causes. Its horizontal axis shows
cause categories, and its vertical axis shows the percentage of corresponding
causes. For each root cause, we refine its bugs by symptoms. We find that all the
symptoms have multiple and evenly distributed root causes, but the distribution
of root causes are not so evenly. The distributions lead to our first finding:

Finding 1. Compared to symptoms, root causes are more determinative, since
several root causes have dominated symptoms.

Tan et al. [46] show that in Mozilla, Apache, and the Linux kernel, the domi-
nant root cause is semantic (80%). In our taxonomy, memory, configuration and

10 L. Jia et al.

Algorithm

Dimension
mismatch

Functional
error

Crash

Type
confusion

Build failure

Processing

Warning-
style error

2.79

2.09

1.82

1.12

0.56

0.84

1.24

Corner
cases

Inconsistency

Memory

Logic error Configuration
error

Referenced
types error

0.63

1.95

0.76

0.49

0.33

1.97

2.15

2.53

1.81

0.76 4.19

3.35

1.10

1.83

Fig. 2: Correlation between symptoms and root causes

referenced types errors belong to semantic bugs (85%), which are close to Tan et
al. Thung et al. [47] show that in machine learning systems, algorithm errors are
the most common bugs (22.6%). The above observations lead to another finding:

Finding 2. The symptoms and causes of TensorFlow are more like an ordinary
software system (e.g., Mozilla) than a machine learning system (e.g., Lucene).

A machine learning system typically provide many algorithms for users to
invoke. For example, although Lucene is also large (554,036 lines of code), the
symptoms and root causes of its bugs are more different from TensorFlow than
ordinary software systems like Mozilla. We find that Lucene provides numerous
APIs to handle natural language texts in different ways (e.g., tokenization). In
the contrast, TensorFlow provides much fewer interfaces to invoke, which is more
like a traditional software system.

Correlation of bug categories Figure 2 shows the correlation of bug cate-
gories. The rectangles on the left side denote symptoms, the ovals on the right
side denote root causes. We choose different colors to distinguish the correlations,
and the root causes of the same color are not related. We ignore categories whose
bugs are fewer than three, since they are statistically insignificant. For example,
we ignore hangs, since only two bugs are hangs. The lines denote correlations,
and we highlight correlations whose values are greater than one.

Both Tan et al. [46] and we find that crashes have correlations with memory
bugs and corner cases. Tan et al. [46] find that crashes also have correlations
with concurrency, but we do not consider it, since only two of our analyzed bugs
are concurrency. Instead, our study shows that crashes of TensorFlow have cor-
relations with type confusions, which are not identified by Tan et al. In addition,
Tan et al. [46] and we find that function errors have correlations with processing
and logic errors. Tan et al. [46] find that function errors have correlations with
missing features by defining a missing feature as a feature is not implemented
yet. As we find that TensorFlow programmers seldom write their unimplemented
features in their code, we eliminate this subcategory. We find that build failures
have correlation with inconsistencies, configurations and referenced type errors,
and warning-style bugs have correlation with inconsistencies, processing, and

An Empirical Study on Bugs inside TensorFlow 11

Algorithm
Dimension
mismatch

kernel runtime

Type
confusion

API

Processing

contributiontool

11.36

0.76

6.651.07 1.06

Corner case Inconsistency Memory Logic error Configuration
error

Referenced
types error

2.74

1.040.95

1.911.43
2.37 1.72 0.95

1.29
0.55 3.40

platformlibrary

1.04 1.07

1.25

2.65

2.12

1.731.46

0.99

0.98

Functional
error Crash

Build
failure

Warning-
style error

1.19

0.90

1.86 0.861.40
0.90

0.63

1.22

1.40

3.42

0.78

1.66

1.47

1.54

0.85 1.47

1.53

Fig. 3: Correlation between locations

type confusions. We believe that other open source projects (e.g., Mozilla) also
have the two types of symptoms, but are ignored by Tan et al. [46]. We iden-
tify the correlations of build failures and warning-style bugs, complementing
the study of Tan et al. [46]. For our identified root causes and symptoms of
TensorFlow, our observations lead to the following finding:

Finding 3. For symptom of TensorFlow bugs, build failures have correlation
with inconsistencies, configurations and referenced type errors, and warning-
style bugs have correlation with inconsistencies, processing, and type confu-
sions. For the root causes of TensorFlow bugs, dimension mismatches lead to
functional errors, and type confusions have correlation with functional errors,
crashes, and warning-style errors.

3.2 RQ2. Bug Locations

Distribution As it contains immature implementations, it is not surprising
that contribution is the most buggy component (34.91%). The next two buggy
components are kernel (11.79%), and API (26.42%). The two components im-
plement the main functionalities of TensorFlow. In particular, kernel implements
deep learning algorithms, and API implements their interfaces. Following them,
the next three buggy components are library (8.02%), platform (7.55%), and tool
(4.72%). The three components implement features to support the compilation,
the execution, and the installation on different platforms. The other components
are less buggy. Even though computation graphs define the process of Tensor-
Flow computing, we find that only 0.94% bugs locate in this component. Our
observations lead to a finding:

Finding 4. In TensorFlow, the major reported bugs are in deep learning algo-
rithms and their interfaces, and the bugs in compiling, deploying, and installing
TensorFlow on different platforms occupy a smaller proportion.

Correlation of bug categories Figure 3 shows the correlations among symp-
toms, root causes, and bug locations. In this figure, the rectangles denote root
causes; the ovals denote symptoms; and the cylinders denote bug locations. We

12 L. Jia et al.

ignore bug locations, if their bugs are fewer than three. The lines denote corre-
lations, and we highlight correlations whose values are greater than one.

For root causes, we find that inconsistencies are popular, and for symptoms,
crashes and build failures are popular among the components. From the perspec-
tive of components, we find that kernel has strong correlation with functional
errors and corner cases, which indicates semantic bugs are dominant in this com-
ponent. Meanwhile, we find that API has strong correlation with root causes
related to tensor computations such as dimension mismatches and type confu-
sions. For library and tool, their symptoms have strong correlations with build
failures, and their root causes have strong correlations with inconsistences. The
above observations lead to a finding:

Finding 5. Crashes and build failures are popular symptoms, and inconsis-
tencies are a popular root cause among components. For those most buggy
components, we find that kernel contains many sematic bugs, and API con-
tains root causes related to tensor computations such as dimension mismatches
and type confusions. In the related components such as library and tool, build
failures are popular, and most bugs are caused by inconsistencies.

3.3 Threat to validity

The internal threats to validity include the possible errors of our manual in-
spection. To reduce the threat, we ask two students to inspect our bugs. When
they encounter controversial cases, they discuss them with others on our group
meeting, until they reach an agreement. The threat can be mitigated with more
researchers, so we release our inspection results on our website. The internal
threats to external validity include our subject, since we analyzed the bugs in-
side only TensorFlow. Although our analyzed bugs are comparable with the prior
studies and other studies (e.g. [54]) also analyzed only TensorFlow bugs, they
are limited. The threat can be reduced by analyzing more libraries in future.

4 The Significance of Our Findings

Improving the quality of deep learning libraries. For every root cause
of TensorFlow bug, we find several major symptoms occupy a large proportion
(Finding 1), and the correlations between root cause and symptom can also
suggest possible links (Finding 3), which can help developers to diagnose the
cause of a bug according to its symptom. Since TensorFlow bug characteristics
show strong similarity to traditional software (Finding 2), the experience and
tools of bug repairing in other software can also be transferred to TensorFlow.
Since the proportion of bugs in different component varies obviously (Finding
4), developers should pay more attention to safety check and test case design,
when adding new features or making modifications to bug-prone components.
Moreover, as the integration of libraries is common in deep learning software, the
connection of different libraries should obtain higher priority in development. To
overcome this problem, developing unified APIs can be helpful.

An Empirical Study on Bugs inside TensorFlow 13

Combining the results of the prior studies. From two different perspectives
of deep learning software, the prior studies [54,33] analyze the bugs of deep
learning clients, but our study analyzes the bugs of deep learning libraries. The
bugs inside deep learning libraries can have impacts on the bugs of their clients.
For example, Islam et al. [33] find that 11% percentage of TensorFlow client bugs
are caused by incorrect usages of deep learning APIs. From the perspective of
deep learning libraries, such bugs can be caused by the inconsistency bugs in our
study. As another example, the prior studies [54,33] show that unaligned tensors
and the absences of type checking are common causes of deep learning client
bugs. We suspect that such bugs are related to dimension mismatches and type
confusions, which are found in our study. In future work, we plan to combine
the results of the prior studies and ours and explore more advanced techniques
to detect deep learning bugs.
The inspiration to databases and their applications. We notice that some
bugs in deep learning libraries are common in database systems (e.g., memory
bugs 2.97% and concurrency bugs 0.99%), and detecting such bugs has been a
hot research topic in the research community of databases [37,43,44]. As advo-
cated by Wang et al. [52], the existing techniques in the database community
can be tailored to handle similar bugs in deep learning libraries [52]. Addition-
ally, as more and more deep learning techniques and frameworks are applied to
solve database problems [36,53], our revealed bugs in side such libraries are also
important for database researchers and programmers.

5 Related Work

Empirical studies on bug characteristics. There has been a number of
recent studies studying bugs from open source repositories. Tan et al. [46] analyze
the bug characteristics of open source projects such as the Linux kernel and
Mozilla. Thung et al. [47] analyze the bugs of machine learning systems such
as Mahout, Lucene, and OpenNLP. Zhang et al. [54] analyze the client code
that calls TensorFlow. Islam et al. [33] analyze the clients of more deep learning
bugs. Compared with all existing works, we analyze bugs inside a representative
deep-learning library i.e., TensorFlow, which is a different angle from theirs.
Detecting deep learning bugs. Pei et al. [41] propose a whitebox framework
to test real-world deep learning systems. Ma et al. [40] propose a set of multi-
granularity criteria to measure the quality of test cases prepared for deep learning
systems. Tian et al. [48] and Pham et al. [42] introduce differential testing to
discover bugs in deep learning software. Our empirical study reals new types of
bugs, which cannot be effectively detected by the above approaches. Our findings
are useful for researchers, when they design detection approaches for such bugs.

6 Conclusion and Future Work

Although researchers have conducted empirical studies to understand deep learn-
ing bugs, these studies focus on bugs of its clients, and the nature of bugs inside a

14 L. Jia et al.

deep library is still largely unknown. To deepen the understanding of such bugs,
we analyzed 202 bugs inside TensorFlow. Our results show that (1) its root causes
are more determinative than its symptoms; (2) bugs in traditional software and
TensorFlow share various common characteristics; and (3) inappropriate data
formatting (dimension and type) is bug prone and popular in API implements
while inconsistent bugs are common in other supporting components. In future
work, we will analyze bugs from more deep-learning libraries to obtain a more
comprehensive understanding of bugs in deep learning frameworks, and we plan
to design automatic tools to detet bugs in deep-learning libraries.

Acknowledgement

We appreciate the anonymous reviewers for their insightful comments. This work
is sponsored by the National Key R&D Program of China No. 2018YFC083050.

References

1. Fix deadlocks in staging areas. https://github.com/tensorflow/tensorflow/

pull/13684 (2017)
2. Bug in tf.print summarized formatting. https://github.com/tensorflow/

tensorflow/issues/20751 (2018)
3. Cannot opened include file ”tensorflow/contrib/tpu/proto/tpu embedding config.

pb.h”: no such file or directory. https://github.com/tensorflow/tensorflow/

issues/16262 (2018)
4. Exception when not providing optional parameter frequency skip in timefreqlstm-

cell. https://github.com/tensorflow/tensorflow/issues/16100 (2018)
5. Fix an imperfect implementation of tf.losses.mean pairwise squared error. https:

//github.com/tensorflow/tensorflow/pull/16433 (2018)
6. Fix broken python3 build. https://github.com/tensorflow/tensorflow/pull/

16130 (2018)
7. Fix build issue with kafkadataset. https://github.com/tensorflow/tensorflow/

pull/17418 (2018)
8. Fix error: Convndlstmcell does not pass name parameter. https://github.com/

tensorflow/tensorflow/pull/17345 (2018)
9. Fix possible memory leak. https://github.com/tensorflow/tensorflow/pull/

21950 (2018)
10. Fix routing of quantized tensors. https://github.com/tensorflow/tensorflow/

pull/19894 (2018)
11. Fix tf.argmax warnings on dimension argument by using axis instead. https://

github.com/tensorflow/tensorflow/pull/18558 (2018)
12. Fix var type issue which breaks crf decode. https://github.com/tensorflow/

tensorflow/pull/21371 (2018)
13. Fixed build error on gcc-7. https://github.com/tensorflow/tensorflow/pull/

21017 (2018)
14. [INTEL MKL] fix bug in mklslice op when allocating output tensor. https://

github.com/tensorflow/tensorflow/pull/22822 (2018)
15. Max pooling cause error on empty batch. https://github.com/tensorflow/

tensorflow/issues/21338 (2018)

https://github.com/tensorflow/tensorflow/pull/13684
https://github.com/tensorflow/tensorflow/pull/13684
https://github.com/tensorflow/tensorflow/issues/20751
https://github.com/tensorflow/tensorflow/issues/20751
https://github.com/tensorflow/tensorflow/issues/16262
https://github.com/tensorflow/tensorflow/issues/16262
https://github.com/tensorflow/tensorflow/issues/16100
https://github.com/tensorflow/tensorflow/pull/16433
https://github.com/tensorflow/tensorflow/pull/16433
https://github.com/tensorflow/tensorflow/pull/16130
https://github.com/tensorflow/tensorflow/pull/16130
https://github.com/tensorflow/tensorflow/pull/17418
https://github.com/tensorflow/tensorflow/pull/17418
https://github.com/tensorflow/tensorflow/pull/17345
https://github.com/tensorflow/tensorflow/pull/17345
https://github.com/tensorflow/tensorflow/pull/21950
https://github.com/tensorflow/tensorflow/pull/21950
https://github.com/tensorflow/tensorflow/pull/19894
https://github.com/tensorflow/tensorflow/pull/19894
https://github.com/tensorflow/tensorflow/pull/18558
https://github.com/tensorflow/tensorflow/pull/18558
https://github.com/tensorflow/tensorflow/pull/21371
https://github.com/tensorflow/tensorflow/pull/21371
https://github.com/tensorflow/tensorflow/pull/21017
https://github.com/tensorflow/tensorflow/pull/21017
https://github.com/tensorflow/tensorflow/pull/22822
https://github.com/tensorflow/tensorflow/pull/22822
https://github.com/tensorflow/tensorflow/issues/21338
https://github.com/tensorflow/tensorflow/issues/21338

An Empirical Study on Bugs inside TensorFlow 15

16. Mkl dnn: fix the tf1.6 speed issue by fixing mkl dnn lrn taking the optimum path.
https://github.com/tensorflow/tensorflow/pull/17605 (2018)

17. tf cnn benchmarks.py stuck when running with multiple gpus and imagenet
data with protocol grpc+verbs. https://github.com/tensorflow/tensorflow/

issues/11725 (2018)
18. Fix for stringpiece build failure. https://github.com/tensorflow/tensorflow/

pull/21956 (2019)
19. Keras. https://keras.io. (2019)
20. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: A system for large-scale machine learning. In:
Proc. OSDI. pp. 265–283 (2016)

21. Anand, S.S., Bell, D.A., Hughes, J.G.: An empirical performance study of the
ingres search accelerator for a large property management database system. In:
Proc. VLDB. pp. 676–685 (1994)

22. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1), 11–33 (2004)

23. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O.,
Desjardins, G., Wardefarley, D., Goodfellow, I., Bergeron, A.: Theano: Deep learn-
ing on gpus with python. In: Proc. Nips, BigLearning Workshop (2011)

24. Caramihale, T., Popescu, D., Ichim, L.: Emotion classification using a TensorFlow
generative adversarial network implementation. Symmetry 10(9), 414 (2018)

25. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of
operating system errors. In: SOSP. pp. 73–88 (2001)

26. Collobert, R., Bengio, S., Marithoz, J.: Torch: A modular machine learning software
library (2002)

27. Derr, E., Bugiel, S., Fahl, S., Acar, Y., Backes, M.: Keep me updated: An empirical
study of third-party library updatability on android. In: Proc. CCS. pp. 2187–2200
(2017)

28. Endres, A.: An analysis of errors and their causes in system programs. IEEE Trans.
Software Eng. 1(2), 140–149 (1975)

29. Florêncio, D.A.F., Herley, C.: A large-scale study of web password habits. In: Proc.
WWW. pp. 657–666 (2007)

30. Glass, R.L.: Persistent software errors. IEEE Trans. Software Eng. 7(2), 162–168
(1981)

31. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers (2011)

32. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hy-
brid lexical and syntactical information. Empirical Software Engineering pp. 1–39
(2019)

33. Islam, M.J., Nguyen, G., Pan, R., Rajan, H.: A comprehensive study on deep
learning bug characteristics. In: Pro. ESEC/FSE. p. to appear (2019)

34. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: Proc. MM. pp. 675–678 (2014)

35. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proc. ICLR (2017)

36. Li, G., Zhou, X., Li, S., Gao, B.: Qtune: A query-aware database tuning system
with deep reinforcement learning. PVLDB 12(12), 2118–2130 (2019)

https://github.com/tensorflow/tensorflow/pull/17605
https://github.com/tensorflow/tensorflow/issues/11725
https://github.com/tensorflow/tensorflow/issues/11725
https://github.com/tensorflow/tensorflow/pull/21956
https://github.com/tensorflow/tensorflow/pull/21956
https://keras.io.

16 L. Jia et al.

37. Lin, Q., Chen, G., Zhang, M.: On the design of adaptive and speculative concur-
rency control in distributed databases. In: Proc. ICDE. pp. 1376–1379 (2018)

38. Liu, T., Liu, B.: Constrained-size TensorFlow models for youtube-8m video under-
standing challenge. In: ECCV Workshops. pp. 239–249 (2018)

39. Lockemann, P.C., Nagel, H., Walter, I.M.: Databases for knowledge bases: empir-
ical study of a knowledge base management system for a semantic network. Data
and Knowledge Engineering 7, 115–154 (1991)

40. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L.,
Liu, Y., Zhao, J., Wang, Y.: Deepgauge: Multi-granularity testing criteria for deep
learning systems. In: Proc. ASE. pp. 120–131 (2018)

41. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of
deep learning systems. In: Proc. SOSP. pp. 1–18 (2017)

42. Pham, H.V., Lutellier, T., Qi, W., Tan, L.: CRADLE: cross-backend validation to
detect and localize bugs in deep learning libraries. In: Proc. ICSE. pp. 1027–1038
(2019)

43. Ren, K., Thomson, A., Abadi, D.J.: VLL: a lock manager redesign for main memory
database systems. VLDB J. 24(5), 681–705 (2015)

44. van Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe, K., Doi,
Y., Harada, L., Sato, M.: Managing non-volatile memory in database systems. In:
Proc. SIGMOD. pp. 1541–1555 (2018)

45. Rosenblum, M., Bugnion, E., Herrod, S.A., Witchel, E., Gupta, A.: The impact of
architectural trends on operating system performance. In: Proc. SOSP. pp. 285–298
(1995)

46. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empirical Software Engineering 19(6), 1665–1705 (2014)

47. Thung, F., Wang, S., Lo, D., Jiang, L.: An empirical study of bugs in machine
learning systems. In: Proc. ISSRE. pp. 271–280 (2012)

48. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proc. ICSE. pp. 303–314 (2018)

49. Variani, E., Bagby, T., McDermott, E., Bacchiani, M.: End-to-end training of
acoustic models for large vocabulary continuous speech recognition with Tensor-
Flow. In: Proc. Interspeech. pp. 1641–1645 (2017)

50. Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S.L., Xu, Z., Kraska, T.: Su-
perneurons: dynamic GPU memory management for training deep neural networks.
In: Proc. PPoPP. pp. 41–53 (2018)

51. Wang, S., Liu, T., Nam, J., Tan, L.: Deep semantic feature learning for software
defect prediction. IEEE Transactions on Software Engineering (2018)

52. Wang, W., Zhang, M., Chen, G., Jagadish, H.V., Ooi, B.C., Tan, K.: Database
meets deep learning: Challenges and opportunities. SIGMOD Record 45(2), 17–22
(2016)

53. Xu, B., Cai, R., Zhang, Z., Yang, X., Hao, Z., Li, Z., Liang, Z.: NADAQ: natural
language database querying based on deep learning. IEEE Access 7, 35012–35017
(2019)

54. Zhang, Y., Chen, Y., Cheung, S., Xiong, Y., Zhang, L.: An empirical study on
TensorFlow program bugs. In: Proc. ISSTA. pp. 129–140 (2018)

55. Zhong, Y., Tang, Z., Ding, X., Zhu, L., Le, Y., Li, K., Li, K.: An improved LDA
multi-document summarization model based on TensorFlow. In: Proc. ICTAI. pp.
255–259 (2017)

	An Empirical Study on Bugs inside TensorFlow

