
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study on API Usages from Code
Search Engine and Local Library

Hao Zhong · Xiaoyin Wang

Received: date / Accepted: date

Abstract To help programmers find proper API methods and learn API us-
ages, researchers have proposed various code search engines. Given an API of
interest, a code search engine can retrieve its code samples from online soft-
ware repositories. Through such tools, Internet code becomes a major resource
for learning API usages. Besides Internet code, local library code also contains
API usages, and researchers have found that library code contains many API
usages that are more concise than those in client code. As samples from a code
search engine are typically client code, it is interesting to explore the API us-
ages inside library code, but the samples inside library code contain internal
method invocations. If an empirical study does not remove them from API us-
ages, it can significantly overestimate the API usages from library code. Due
to this challenge, no prior study has ever analyzed API usages inside libraries,
and many research questions are still open. For example, how many API usages
are there inside libraries? The answers are useful to motivate future research
on APIs and code search engines.

The internal usages in library code will introduce compilation errors when
they are directly called from the client side. To support the exploration of the
above questions, in this paper, we propose CodeEx that extracts Internet
code samples from a popular code search engine and local code samples by
removing internal usages from library code. With the support of CodeEx,
we conduct the first empirical study on API usages of five libraries, and sum-
marize our results into six findings as the answers to five research questions.
Our results are useful for researchers to motivate their future research. For
example, our results show that although code samples from library code are

H. Zhong
Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
E-mail: zhonghao@sjtu.edu.cn

X. Wang
Department of Computer Science, University of Texas at San Antonio, USA
E-mail: Xiaoyin.Wang@utsa.edu

2 Hao Zhong, Xiaoyin Wang

only half of those from the code search engine, they cover 4.0 times more API
classes, 4.7 times more API methods, and 3.0 times more call sequences. Mean-
while, in a controlled experiment, we compare their effectiveness in assisting
programming. We find that more API usages do not lead to more complete
tasks, and it highlights the importance of code recommendation approaches.

1 Introduction

Application programming interface (API) libraries become increasingly pop-
ular in both open-source and commercial projects because they can reduce
implementation effort. Despite their popularity, programmers often complain
that it is difficult to learn API usages [55,49]. Since there are many APIs, even
experienced programmers often encounter unfamiliar ones. To learn the usages
of those unfamiliar APIs, programmers typically use code search engines [42,
38] to retrieve code samples, and some engines (e.g., SearchCode [8]) are built
upon Internet-scale repositories.

Despite the above tools, programmers still complain that it is difficult
to obtain their required code samples, especially for new and less popular
APIs. For example, the prior studies [54,32] show that many programmers
are reluctant to update their code, since it is difficult to retrieve valid code
samples for new and uncommon APIs. As some code search engines already
include millions of lines of code, adding more source files may not be useful to
retrieve more API usages. Most samples from code search engines are client
code, but the library code declaring and defining the APIs also calls its own
APIs in various ways. As library developers are often more familiar with their
APIs than client developers, library code can call APIs more effectively than
client code. Based on this insight, Kawrykow and Robillard [29] propose an
approach to replace API usages in client code with more concise API usages
in library code. For example, JBOSS has the following code:

1 Thread th=Thread . currentThread () ;
2 ClassLoader l oade r=th . getContextClassLoader () ;
3 Class tC=null ;
4 try {
5 tC=Clas s e s . getPrimitiveTypeForName (type) ;
6 i f (tC == null)
7 tC=loade r . l oadClas s (attrType) ;
8 } catch (ClassNotFoundException ignore) { }
9 PropertyEditor ed i t o r=null ;

10 i f (tC != null)
11 ed i t o r=PropertyEditorManager . f i ndEd i t o r (tC) ;

By identifying the library code that implements similar functionalities,
Kawrykow and Robillard [29] replace the above code with the following code:

1 PropertyEditor ed i t o r = null ;
2 try {
3 ed i t o r = PropertyEditors . ge tEd i tor (type) ;
4 } catch (ClassNotFoundException ignore) { }

An Empirical Study on API Usages from Code Search Engine and Local Library 3

Although the latter code is more concise, its usage is less known to client
programmers, so their code illustrates a different and less effective way to call
APIs. In total, Kawrykow and Robillard [29] found more than 400 such cases.
Although their results show that library code can be used to improve existing
API usage samples, to the best of our knowledge, no prior research effort
studies the feasibility and potential benefits of directly extracting API usages
from library code. While there are already many empirical studies on API
usages (see Section 5 for details), none of these studies analyzes API usages
in library code. A widely believed difficulty in reusing library code as API
usage samples lies in that library code can invoke APIs together with internal
code references (e.g., private code elements) which are not accessible outside
the library. If researchers do not remove internal usages in their empirical
studies, they can significantly overestimate the API usages from library code
and their answers to research questions can be superficial. It is challenging
to remove internal usages. For example, the names of internal code elements
seldom have any hints. Due to the challenge, many research questions along
with this research line are still open. For example, compared with Internet
code, does library code provide extra API usages, and to what degree? These
questions are important, since their answers can shed light on new research
directions and tools.

In our study, we implement a tool that retrieves Internet code from a code
search engine and removes internal usages from library code. With its support,
we conduct an empirical study to explore the following research questions:

– RQ1. What proportion of APIs can have their usage samples ex-
tracted from a code search engine called SearchCode?
Motivation. The result is useful to understand the situations when pro-
grammers use code search engines to retrieve code samples.
Protocol. SearchCode is a code search engine, and its repository includes
billions of lines of code collected from millions of projects. Based on the
Web APIs of SearchCode, we implement a tool called CodeEx to analyze
the API coverage of SearchCode.
Result. We find that even with such a large repository, except for one
case (lucene, 21.3%), our retrieved relevant and up-to-date samples aver-
agely cover only 9.3% of API classes (Finding 1). Our results explain why
programmers complain that code samples are insufficient.

– RQ2. What proportion of APIs can have their usage samples
extracted from local library code?
Motivation. Programmers need code samples that illustrate more API
usages, especially for those new and less popular libraries. As SearchCode
already has millions of projects, it is less useful to add more projects.
Instead, this research question explores the API coverage of libraries.
Protocol. To eliminate the bias of internal usages, we implement CodeEx
that removes internal usages from libraries. With its support, we analyze
to what proportion of APIs has their usage samples from the library code.

4 Hao Zhong, Xiaoyin Wang

Result. For 90% API classes with at least one usage sample available,
library code contains more code samples than Internet code. Library code
covers 4.0 times more API classes, 4.7 times more API methods, and 3.0
times more call sequences than Internet code (Finding 2).

– RQ3. What are the characteristics of samples?
Motivation. While researchers [60] mine patterns from Internet code, this
research question explores whether similar techniques work on library code.
Protocol. In this research question, we compare the API usages from
Internet code with those from library code.
Result. The code samples from library code are less repetitive than those
from Internet code (Finding 3).

– RQ4. To what degree are API usages overlapped?
Motivation. The answers are useful to understand whether one source
can replace the other.
Protocol. We explore the overlapped API usages.
Result. We find that the API usages from the two sources have 90%
overlapped API classes and 80% overlapped methods, but the overlapped
samples reduce to about 20%, when we consider their call sequences (Find-
ing 4). The results indicate that the API usages from the two sources can
complement each other, and it can be interesting to further analyze their
different call sequences.

– RQ5. To what degree can programmers obtain benefits from code
samples that illustrate more API usages?
Motivation. The results are useful to understand the usefulness of API
usages in assisting programming.
Protocol. We prepared 20 programming tasks, and in a controlled setting,
we compared their completed programming tasks in the two treatments of
using samples from either source.
Result. We found that for cases where usage samples can be extracted
from both sources, samples extracted from library code have similar ef-
fectiveness compared with those extracted from Internet code in assisting
developers. However, usage samples from library code cover more cases
and help developers in more tasks. The result highlights the importance of
code recommendation techniques, since it is ineffective for programmers to
manually identify useful samples when samples are many.

2 Methodology

Section 2.1 introduces our subjects. We select a popular code search engine
called SearchCode [3] to retrieve Internet code samples. Library code contains
internal usages (e.g., private method calls). If we count them as API usages,
we will overestimate API usages from library code. To support our study, we
implement a support tool called CodeEx that extracts Internet code from
SearchCode (Section 2.2) and removes internal calls from library code (Sec-
tion 2.3). Section 2.4 introduces our analysis protocol.

An Empirical Study on API Usages from Code Search Engine and Local Library 5

Table 1: The libraries.

Name Version Class Method URL

accumulo 1.9.2 2,839 26,678 drzhonghao.github.io/accumulodoc/

cassandra 3.11.2 2,273 17,325 drzhonghao.github.io/cassandradoc/

karaf 4.2.3 998 4,755 drzhonghao.github.io/karafdoc/

lucene 7.4.0 2,414 12,189 drzhonghao.github.io/lucenedoc/

poi 4.0.1 2,432 21,045 drzhonghao.github.io/poidoc/

2.1 Subject

Table 1 shows the subjects: accumulo [1] allows storing and managing large data
across clusters; cassandra [2] is a database for data centers; karaf [5] is an appli-
cation runtime for the enterprise; lucene [6] is an indexing and search library;
and poi [7] is a library for manipulating Microsoft documents. We selected
different projects to show the impacts of factors such as size and popularity.
All the libraries are shipped with their API documents. For example, although
cassandra [2] does not provide online API documents, its offline API documents
are compressed in its released files [9]. APIs evolve rapidly across versions, but
their projects do not present online documents for all versions. For example,
accumulo provides the API documents of 1.9 [10], but does not present the API
documents of 1.9.2. ClientContext is an API class of accumulo 1.9.2, but does
not belong to 1.9. To avoid ambiguity, we upload the API documents of all the
libraries. Column “URL” shows their urls. Columns “Class” and “Method” list
the numbers of API classes and methods as defined in their documents.

2.2 Retrieving Internet Code

As SearchCode [8] is a popular code search engine, we used SearchCode to re-
trieve code samples for all the APIs of our subjects. The repository of Search-
Code includes billions of lines of code collected from millions of projects. As
the libraries in Table 1 have thousands of APIs, it is infeasible to manually
query their code samples. As described in Section 3.1.1, to resolve the problem,
we implement CodeEx upon the interfaces of SearchCode [3], and it extracts
samples for all the API classes of each library. SearchCode locates relevant
code samples by matching text contents. If a code sample calls a t type, to
resolve its reference, the sample must have an import statement: import t.name;,
where t.name is the full name of t. As full names of types appear in code sam-
ples, for each API class, our tool searches its full name for its code samples.
CodeEx removes the following samples:

1. Irrelevant code samples. A retrieved sample can be irrelevant when
it has unused import statements. Most compilers give warning for them, but
do not produce compilation errors. If the full name of t is only matched in
an unused import statement, SearchCode will return the code sample, but the
sample does not call any methods of the class. Our tool removes a code sample
of a type, if this type appears in unused import statements.

drzhonghao.github.io/accumulodoc/
drzhonghao.github.io/cassandradoc/
drzhonghao.github.io/karafdoc/
drzhonghao.github.io/lucenedoc/
drzhonghao.github.io/poidoc/

6 Hao Zhong, Xiaoyin Wang

2. Obsolete code samples. When we calculate how many APIs are cov-
ered by code samples, we must determine the complete set of API elements.
In this study, we use the API elements declared by the API documentation
of the latest library as the complete set. Although obsolete code samples are
useful to learn old libraries, we have to remove them, since they call many API
elements that do not appear in the complete set of our study. From each code
sample of a library, our tool extracts all its called API classes and methods.
If a called class or method is not declared by the version of interest, our tool
removes the code sample. It should be noted that many popular libraries re-
lease new versions rapidly. For example, since April 2019, lucene has released a
newer version (8.2.0). From such newer versions, it is more difficult to retrieve
up-to-date samples for developers than the versions in Table 1.

A retrieved code sample is partial code because its dependent source files
are not retrieved. Even for a tool, removing the above two types of samples
is nontrivial. To handle this issue, we build our tool on PPA [20], a tool for
partial code analysis. As partial analysis is difficult, PPA may fail to resolve
the full names of some code elements. Our tool takes a conservative strategy to
handle unresolved code elements. If PPA fails to resolve the full name of a class,
our tool will not consider its enclosing code sample as irrelevant. From each
code sample, CodeEx extracts its called API classes, methods, and fields, and
matches them against the API elements declared by the API documentation of
the latest libraries to locate obsolete code samples. If the API usage of a code
sample does not violate the backward compatibility, it will not be removed.

2.3 Removing Internal Call

Given an API class of a library as a query, CodeEx extracts its relevant code
snippets from the library. The JDT [4] extends Eclipse to a Java IDE, and
implements various features (e.g., searching for local files). CodeEx extends
the local search of JDT. Given an API class of a library, CodeEx searches the
library for the source files that contain the references of the class. As libraries
provide complete code, CodeEx is able to use JDT to resolve the full names
of code elements, which is more accurate than a partial analysis tool like PPA.
Like other code search engines, the local search of JDT can retrieve irrelevant
code snippets. CodeEx takes the same criteria as described in Section 2.2 to
remove irrelevant code snippets. As code snippets are extracted from libraries,
they are all up-to-date.

When programmers write their code, they typically choose package names
that are different from their libraries. As their package names are different,
client code cannot call some private and protected code elements that are visi-
ble to only library code. To reveal internal usages, after a source file of library
code is retrieved, CodeEx first removes its package name so that it cannot
access internal usages anymore (e.g., protected methods from classes in the
same package). After the package name is removed, a class may not access
even the public classes in this package. To resolve the problem, CodeEx ex-

An Empirical Study on API Usages from Code Search Engine and Local Library 7

plicitly imports all classes of the package. From the viewpoint of client-code
programmers, internal usages are not accessible. If the client code calls inter-
nal usages, it is not compilable or executable. As a result, removing internal
usages does not lose any useful API usages. From the viewpoints of program-
mers,CodeEx does not decrease the quality of the code samples from libraries.
From the viewpoint of our study, the impact is mixed. On one hand, remov-
ing internal calls can drastically change samples, so it can introduce negative
impacts to library code. On the other hand, a tool typically recommends par-
tial source files. As such source files produce various compilation errors, it is
difficult for programmers to manually identify internal usages. After internal
usages are removed, programmers do not need to identify them.

For each source file, CodeEx extends JDT to compile it. The compilation
reports code elements with errors and their error types. CodeEx extracts
these error types, and implements removing rules (referred to as removers as
follows) to resolve our found error types. We next introduce the removers.

ROI1. Removing statements with internal usages. If a statement
calls an internal code element of a library, CodeEx removes the statement.

ROI2. Removing a method or a constructor with internal type
parameters. If a method or a constructor has a parameter whose type is
internal, the method/constructor is removed.

ROI3. Removing a field or a variable whose types are internal. If
the type of a field or a variable is internal, CodeEx removes the declaration
of the field/variable.

ROI4. Removing super types and super interfaces that are inter-
nal. If a class extends an internal type, CodeEx removes the extension. If
a class implements an internal interface, CodeEx removes it from its imple-
mented interfaces.

ROI5. Removing incompatible anonymous types or enumerations.
If a class declares an anonymous class or an enumeration, after we remove its
package name, the anonymous class or the enumeration can introduce com-
pilation errors. For example, Figure 1 shows a source file of cassandra. Line
7 compares whether the current operating system is Linux. In this line, the
Java compiler resolves that the type of osType is OSType in Line 2, but resolves
that LINUX is declared by org.apache.cassandra.utils.NativeLibrary, which is li-
brary code. As a result, the Java compiler reports that the operand types are
incompatible. CodeEx removes the if check statement in Line 7 to resolve
the problem. Anonymous classes and enumerations can lead to other types of
compilation errors, such as in the following code snippet.

1 AutoSavingCache<KeyCacheKey , RowIndexEntry> keyCache = new
AutoSavingCache<>(kc , CacheType .KEY CACHE, new
KeyCacheSer ia l i z e r ()) ;

In the above statement, CacheType.KEY CACHE is an enumeration. As the cor-
responding parameter type of the constructor is resolved as an internal code
element, the Java compiler fails to infer the type arguments for AutoSavingCache.
CodeEx removes such statements to handle the problem.

8 Hao Zhong, Xiaoyin Wang

1 public f ina l c lass NativeLibrary {
2 public enum OSType{LINUX, MAC, WINDOWS, . . . ; }
3 private stat ic f ina l OSType osType ;
4 private stat ic f ina l int MCLCURRENT ; . . .
5 stat ic { . . .
6 osType = getOsType () ;
7 i f (osType == LINUX) {
8 MCLCURRENT = 0x2000 ; . . . }
9 } . . .

Fig. 1: Incompatible enumeration

ROI6. Removing incompatible casts and type checks. After we
change the package name of a class, its class hierarchy is changed, and cast

statements and type checks can introduce compilation errors, such as follows:

1 abstract class AbstractQueryPager . . . {
2 public boolean i sExhausted () {
3 return exhausted | | remaining == 0 | | ((this instanceof

S ing l ePa r t i t i onPage r) && rema in ing InPar t i t i on == 0) ;}}

In cassandra, AbstractQueryPager is the super type of SinglePartitionPager,
and Line 3 does not have compilation errors. After we remove the package name
of AbstractQueryPager, it is no longer the super type of SinglePartitionPager. As
a result, Line 3 produces a compilation error. CodeEx removes the corre-
sponding cast statements and type checks to handle the problem.

CodeEx defines the following removers to handle consequential errors:

ROM1. Removing catch clauses. An internal method call can throw an
exception (e). When calling the method, programmers can enclose the method
call with a try statement, and handles e in a catch clause (cat). After the
internal call is removed, cat introduces a compilation error, since the remaining
statements inside the try statement do not throw e anymore. To handle the
problem, CodeEx removes cat from the try statement. If cat is the only catch
clause and e is the only handled exception, CodeEx takes its inner statements
out of the try statement, and then removes the try statement.

ROM2. Removing unknown variables. If the type of a variable is
internal, ROI3 removes the declaration statement of this variable. After that,
in the following statements, the variable becomes unknown, and introduces
compilation errors. At each time, CodeEx removes a statement that uses the
variable, until no more such compilation errors are found.

ROM3. Removing annotations. Java annotations provide metadata
for code. For example, the annotation, @Override, denotes that a method of
a class (c) overrides a method that is declared by the superclass of c. If c

is an internal type, ROI4 removes it, and after the removal, the @Override

annotations will lead to compilation errors, since the superclass is removed.
When such compilation errors are found, CodeEx removes the corresponding
annotations to resolve the problem.

ROM4. Removing final modifiers. After some statements are removed,
final values can become uninitialized. For example, in Figure 1, after ROI5
removes the if statement in Lines 8, the final MCL CURRENT field is not initialized,

An Empirical Study on API Usages from Code Search Engine and Local Library 9

so the removal leads to a compilation error, which complains that the two
fields are not initialized. To handle the problem, CodeEx removes the final

modifiers of the two fields.

ROM5. Removing constructors that call undefined super con-
structors. If a constructor calls a super constructor and the call is removed,
the constructor will produce a compilation error. For example, a piece of code
is as follows:

1 private class Sta t i cLea f extends Leaf{
2 public Sta t i cLea f (I t e r a t o r<Token> tokens , Leaf l e a f){
3 this (tokens , l e a f . smal lestToken () , l e a f . largestToken () , l e a f .

tokenCount () , l e a f . i sLa s tLea f ()) ;
4 } . . . }

In the above code, Line 3 calls an internal method, isLastLeaf(). The re-
moval of this line introduces another compilation error, since Leaf does not
define a constructor without parameters. To handle the problem, CodeEx
removes the whole constructor in Line 2.

ROM6. Generating return statements. If a return statement contains
internal usages,CodeEx will remove the statement. After the return statement
is removed, the remaining code will produce a compilation error, since the
method requires a return statement. To synthesize the statement, CodeEx
resolves the return type of the method. If it is a number value (e.g., integer),
CodeEx adds return 0; if it is a Boolean value, it adds return true; and for
other cases, it adds return null to the end of the method.

ROM7. Generating value initializers. A value can be initialized by
internal method calls. After the internal calls are removed, the value is not
initialized, and can cause compilation errors, if the latter statements access the
variable. To handle the problem, CodeEx generates an assignment statement,
before the statement that produces the compilation error. In the assignment
statement, the variable is assigned to zero, if it is a number value; true, if it is
a boolean value; and null, if it is an object.

ROM8. Removing duplicated assignments to final variables. If
more than one statement accesses an uninitialized variable, ROM6 can gen-
erate more than one assignment statement. In such cases, if the variable is
final, the duplicated assignment leads to a compilation error. To handle the
problem, CodeEx removes the assignment statement that reports the error,
i.e., the latter one.

ROM9. Removing dead code. Removing and generating statements can
lead to dead code. For example, ROM5 assigns null or zero values to uninitial-
ized variables. Such values can be used in latter loop statements, which lead
to infinitive loops. When it happens, the Java compiler reports the statements
after infinitive loops as unreachable code or dead code. CodeEx removes dead
code to resolve the problem.

CodeEx applies the above removers until all compilation errors are re-
moved. As libraries are complete code, internal usages cause compilation er-
rors, but as most code samples from the Internet cannot compile, we cannot

10 Hao Zhong, Xiaoyin Wang

API class
name

Internet
code

2.CodeEx
Library
code

Extracting API usages from the two sources

RQ1. API usages on Internet

RQ2. API usages in library

RQ3. Sample characteristic

RQ4. Overlapped API usages

RQ5. Programming tasks

Research questions

coverage

comparison

human study

Fig. 2: The overview of our study

use compilation errors to guide the removal of internal usages. As a result, in
our study, we remove the internal usages only from library code.

2.4 Analysis Overview

Figure 2 shows the overview of our study. Given each class name from the API
documentation, CodeEx extracts API samples from SearchCode and local
library code. Based on the code samples from the two sources, in total, we
analyze five research questions. RQ1 and RQ2 analyze how many APIs appear
in the code samples from the two sources. RQ3 analyzes the characteristics of
their samples. RQ4 analyzes the overlapped samples. The two RQs concern
the characteristic of samples from the two sources. In RQ5, we prepared 20
programming tasks, and invited four students to complete them. We put the
four students into two teams, and split the tasks into two phases. In each
phase, one team is asked to switch its role in our controlled experiment. In
one role, students searched SearchCode for code samples, and in the other
role, students used the code samples of CodeEx. We prepared test cases for
all the tasks, and counted the number of tasks that were accomplished under
different settings to measure their quality.

2.5 Discussion

Although API tutorials are useful to learn API usages, they cover only a small
portion of APIs, since it is expensive to write API tutorials. As a comparison,
the code samples from a code search engine or libraries can cover much more
APIs. Unlike the code samples from API tutorials, the code samples from a
code search engine or libraries are not written to illustrate API usages. As a
result, in most cases, the API usages from the two sources often scatter in
multiple methods. For example, if two API methods shall be called in pairs
and an API method is called by a client method, the other API method can
be called by other client methods or even by other client classes. As another
example, the code samples from libraries can lose some API calls, since calling
their internal alternative methods is more effective for library developers. As a
result, programmers often retrieve only partial API usages from both sources.
Still, partial usages are useful for programmers. For example, given an input
type and an output type, Jungloid [39] can construct the missing API calls

An Empirical Study on API Usages from Code Search Engine and Local Library 11

between the two types. As another example, given a set of input types and
an output type, XSnippet [59] can recommend code samples whose input and
output types match the given ones. Although the code samples from Jungloid
and XSnippet cannot illustrate full API usages, they are useful in specific
programming contexts. Indeed, programmers often need partial but critical
API usages. For example, many approaches are proposed to mine API pat-
terns between two API method calls [64,43,14]. Programmers can learn such
short patterns, even if code samples provide partial API usages. As larger
API patterns (e.g., sequential patterns [75] and graphs [37,58]) are desirable,
Gabel and Su [22] have proposed an approach to merge shorter patterns into
larger specifications. In addition, researchers [53,33,40] propose to mine com-
plex specifications in the formats of temporal logic. Complex specifications
define API usages precisely, but static analysis is inaccurate. As a result, com-
plex specifications are typically mined from traces that are collected through
dynamic analysis. After their internal usages are removed, source files from li-
braries are compilable, and it becomes feasible to mine complex specifications
from library code. Meanwhile, most source files from code search engines are
not compilable. Given a source file with compilation errors, researchers [73,26]
have proposed approaches to repair its contexts (e.g., library dependencies).
After their compilation errors are all removed, complex specifications can be
mined from Internet code.

3 Empirical Result

This section introduces detailed protocols and empirical results. More details
are listed on our project website: https://github.com/drzhonghao/apistudy

3.1 RQ1. API Usages on Internet

3.1.1 Protocol

In this research question, given an API class of a library as a query, we use
CodeEx to extract its samples from Internet code. As the repository of Search-
Code contains millions of projects, for some popular APIs, it retrieves many
pages of samples. As it is not affordable to download and analyze all the sam-
ples, we limit the analysis scope of our tool to the top 20 pages. Although the
pages beyond the top 20 pages can illustrate some non-popular API usages,
programmers are unlikely to read them, since they typically read only several
top pages. The prior studies analyze even fewer samples. For example, when
Sim et al. [56] analyze the quality of samples that are retrieved by code search
engines, they analyze only the top ten samples.

https://github.com/drzhonghao/apistudy

12 Hao Zhong, Xiaoyin Wang

Table 2: The retrieved Internet code samples.

Name Star Sample %S Real %R

accumulo 884 74 2.6% 35 1.2%
cassandra 6.8k 466 20.5% 163 7.2%

karaf 549 332 33.3% 55 5.5%
lucene 395 1,322 54.8% 514 21.3%
poi 1.2k 471 19.4% 252 10.4%

total 2,665 24.3% 1,019 9.3%

Table 3: The extracted library code samples.

Name Clean Fix Error % Number

accumulo 714 179 21 89.5% 893
cassandra 860 245 46 84.2% 1,105

karaf 316 195 66 74.7% 511
lucene 1,238 407 87 82.4% 1,645
poi 1,198 377 72 84.0% 1,575

total 4,326 1,403 292 82.8% 5,729

3.1.2 Result

Table 2 shows our results. Column “Star” lists the number of stars that are
received from GitHub. Column “Sample” lists the number of API classes that
have retrieved sample (maybe irrelevant or obsolete). Column “%S” is calcu-
lated as Sample

Class . We find that lucene is the mostly covered library. The next is
karaf (33.3%), but its high coverage may be due to its small size. For cassandra

and poi, the retrieved code samples cover about 20% of their classes, although
they are popular. The retrieved code samples cover only 2.5% of classes from
accumulo. Column “Real” lists the number of classes with real samples (i.e.,
after removing irrelevant and obsolete samples). We find that even for the
best library (lucene), the retrieved samples cover only 21.3% of classes, and for
accumulo, the percent is reduced to 1.2%. The observations lead to our finding:

Finding 1. To sum up, even searching samples in a huge repository like
SearchCode, from Internet code, we can collect relevant and up-to-date
samples for only 9.3% of API classes on average.

As the source files of our libraries are much fewer than the repository of
SearchCode, in total, fewer samples were extracted from library code, but for
less popular libraries such as accumulo and karaf, even more samples were
extracted from library code than from Internet code.

3.2 RQ2. API Usages in Library

3.2.1 Protocol

We used CodeEx to extract code samples from the library code. To compare
the samples from Internet code and library code, we implement another tool.
For each sample, this tool collects its called unique API classes, methods, and

An Empirical Study on API Usages from Code Search Engine and Local Library 13

Table 4: API usages covered by Internet / library code.

Name LCC % CCM LCM CCS LCS

accumulo 595 21.0% 83 1,994 67 1,875
cassandra 1,156 50.9% 550 4,298 805 3,817

karaf 235 23.5% 107 557 73 442
lucene 871 36.1% 1,292 2,259 2,184 3,104
poi 1,352 55.6% 1,030 5,392 1,458 4,618

total 4,209 38.4% 3,062 14,500 4,587 13,856

LCC: the number of API classes that have samples from library code;
% is calculated as LCC

Class
, where “Class” is defined in Table 2

CCM and LCM: the numbers of unique API methods that have at least a sample from
Internet code and library code, respectively;
CCS and LCS: the numbers of unique call sequences that are extracted from the samples
of Internet code and library code, respectively.

call sequences. For each library, the tool sums up the results of all its samples.
This tool is built on the Java compiler called JDT. If in a sample, a method
(m) calls API methods, our tool extracts a call sequence from m. As the samples
from SearchCode are partial and are not compilable, it is infeasible to introduce
advanced static analysis or dynamic analysis to extract their accurate call
sequences. CodeEx uses a lightweight static analysis to extract call sequences,
and ignores branch conditions. For example, if an API call appears in the if

branch and another API call appears in the else branch, CodeEx extracts
them in the same call sequence. Our extraction is not accurate, but it provides
a way to measure API usages of samples.

3.2.2 Result

Table 3 shows the results from library code. Column “Clean” lists the number
of source files without internal calls. Column “Fix” shows the number of source
files whose internal calls are fully removed. Column “Error” lists the number
of source files whose internal calls are not successfully removed. In this study,
we analyze only the clean and fixed source files. In total, we extract fewer
samples from library code than from SearchCode. Table 4 shows the number
of unique covered API elements. In total, the samples from library code cover
4,209 API classes. As a comparison, Table 2, the samples from Internet code
cover 1,019 API classes. Column “%” shows that in total, the samples from
library code cover 38.4% of API classes. As a comparison, Table 2 shows that
in total, the samples from Internet code cover only 9.3% of API classes. Here,
for both sources, we count only relevant and up-to-date samples. Table 3 shows
that the samples from library code are fewer than those from Internet code,
as far as the popular libraries such as cassandra, lucene, and poi are considered.
Even for the three libraries, Table 4 shows that the samples from library code
cover significantly more API classes (cassandra from 7.2% to 50.9%; lucene

from 21.3% to 36.1%; and poi from 10.4% to 55.6%). In total, the samples
from library code cover much more API methods and call sequences than the
samples from Internet code. The results lead to our following finding:

14 Hao Zhong, Xiaoyin Wang

100 101 102 103

number of samples
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t

Internet code
Library code

(a) accumulo

100 101 102 103

number of samples
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t

Internet code
Library code

(b) cassandra

100 102101
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t

Internet code
Library code

number of samples

(c) karaf

100 101 102 103

number of samples
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t

Internet code
Library code

(d) lucene

100 101 103 104102
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t

Internet code
Library code

number of samples

(e) poi

100 101 103 104102
0

0.2

0.4

0.6

0.8

1

ac
cu

m
ul

at
iv

e
pe

rc
en

t
Internet code
Library code

number of samples

(f) total

Fig. 3: The number of code samples per API class

Finding 2. The code samples from library code cover 4.0 times more API
classes, 4.7 times more methods, and 3.0 times more call sequences than
the samples from Internet code.

In summary, the samples from library code cover much more API classes,
methods, and call sequences than Internet code.

3.3 RQ3. The Characteristic of Samples

3.3.1 Protocol

For each sample in Table 3, CodeEx extracts the API classes it calls. Based
on the results, for each API class, we reversely count the samples that call
the API class. In this way, we count how many samples each API class has.
Based on the results, we draw figures to show their accumulative percentage.
These figures do not present which classes are the most popular. To handle
this issue, we rank API classes in the descending order of their samples, and
we compare whether their top API classes overlap. To show the uniqueness of
samples, we merge samples whose call sequences are identical. Here, we take a
rigorous criterion, since their arguments can be different even if two sequences
are identical. We draw box plots to show the distribution of call sequences, as
far as their number of samples is concerned.

3.3.2 Result

Figure 3 shows the number of code samples per API class. The horizontal axes
show the number of samples, and the vertical axes show the accumulative
percentages. Please note that the cumulative percentages start from zero, and

An Empirical Study on API Usages from Code Search Engine and Local Library 15

accumulo-CC
accumulo-LC
cassandra-CC
cassandra-LC

karaf-CC
karaf-LC

lucene-CC
lucene-LC

poi-CC
poi-LC

0 10 20 30 40 50 60 70 80 90 100

the frequencies of duplicated sequences

Fig. 4: The frequency of call sequences

the horizontal axes are log scales. We find that the distributions of samples
are consistent across projects. From both sources, a small portion of popular
API classes have much more samples. Several popular API classes even have
thousands of samples. Please note that when we use SearchCode to retrieve
samples from Internet code, for each API class, we analyze only the top 20
pages. As a result, for those popular API classes, SearchCode can retrieve
much more samples than what we collected. For about 10% of API classes,
we retrieved more samples from Internet code than from library code since its
repository is much larger than ours, but for the other classes, we retrieved more
samples from library code. Meanwhile, 50% of API classes have fewer than ten
samples. However, if we consider the areas under the curves, we find that the
distributions of library code are less skewed than those of Internet code. For
example, Figure 3f shows that in total, we retrieved at least one sample for
40% of API classes from library code, and the percent is only 10% when we
retrieved samples from Internet code. From both sources, a few popular API
classes (the top ten percent) have much more samples than the majority, but
the distribution of library code is less skewed. For about 90% of API classes,
samples from library code are more than those from Internet code.

Figure 4 shows the box plot of frequency. “CC” denotes the sequences of
Internet code, and “LC” denotes those of library code. Here, if the frequency of
a call sequence is two, it appears in two code samples. Table 4 shows that the
samples from library code contain more unique call sequences than those from
Internet code. For all the projects, Figure 4 shows that the median frequencies
of library code are lower than those of Internet code. The observation leads to
our following finding:

Finding 3. The call sequences from library code are less repetitive than
those from Internet code.

Researchers proposed approaches to mine API patterns based on their
frequency [11] or their repetitiveness [27]. As samples from library code are
less repetitive, it is more challenging to mine API patterns from these samples,
if researchers use frequencies to mine patterns. Instead, researchers can mine
their usage patterns with other techniques. For example, instead of frequencies,
Saied et al. [51] compare the source files of libraries to identify API call sets.

In summary, from both sources, popular API classes have much more sam-
ples than the majority. For about 10% API classes, Internet code contains
more samples, but fewer samples than library code for other API classes. In

16 Hao Zhong, Xiaoyin Wang

accumulo

cassandra

karaf

lucene

poi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
percent

Internet code
Common
Library code

(a) class

accumulo

cassandra

karaf

lucene

poi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

percent

Internet code
Common
Library code

(b) method

accumulo

cassandra

karaf

lucene

poi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
percent

Internet code
Common
Library code

(c) sequence

Fig. 5: The overlapped API usages

addition, we find that code samples of library code are less repetitive. As a
result, although it is more challenging to mine API patterns from the samples
from library code, it can be more effective to recommend unique samples.

3.4 RQ4. Overlapped API Usages

3.4.1 Protocol

In this research question, we analyze to what degree API usages are over-
lapped. For each API, we check whether it appears in Slc, Scc, or Slc ∩ Scc,
from different levels such as classes, methods, and call sequences.

3.4.2 Result

Figure 5 shows the results: “Internet code” shows APIs that appear only in
Scc; “Library code” shows APIs that appear only in Slc; and “common” shows
APIs that appear in Scc ∩ Slc. Figure 5a shows that at the granularity of API

An Empirical Study on API Usages from Code Search Engine and Local Library 17

classes, except lucene, Slc covers almost the entire Scc. Even for lucene, Slc

covers more than 70% Scc. Comparing with API classes, Figure 5b shows that
at the granularity of methods, Slc covers fewer Scc, but for all the projects,
Slc covers more than half of Scc. However, at the granularity of call sequences,
Slc no longer covers most of Scc. The observation leads to our finding:

Finding 4. The samples from library code cover about 90% of API classes
and 80% of methods that Internet code covers, but the overlapped samples
reduce to about 20%, when we consider their call sequences.

3.5 RQ5. Programming Tasks

In this research question, we conducted a controlled experiment to compare
the two sources in their capability for assisting programming tasks. Although
various approaches have been proposed to rank, mine, and summarize source
files, we did not select these approaches for two considerations. First, the
purpose of this research question is to compare the two sources, but not to
compare techniques. Second, as many approaches are not designed to take API
code as their inputs, their effectiveness can be significantly reduced on library
code. Instead of comparing the above-mentioned approaches, we analyze their
research opportunities in Section 4, according to our findings.

3.5.1 Setup

Human subjects. We invited four PhD students to attend this study. All the
students are majoring in computer science, and none of them are authors of
this paper. Table 5 shows their backgrounds. Rows “experience” and “Java”
show their years of programming experience and years of using Java. Row
“language” shows their known programming languages, ranked by their skills.

Programming tasks. We select poi as the subject library for two con-
siderations. First, it is easier to prepare the environment. We do not have to
install additional software for poi, but if we select other libraries like cassandra,
we have to prepare the database and its tables for its tasks. Second, none of
the students were familiar with poi. In our tasks, we must rule out impacts of
the prior API knowledge, because it will introduce bias to our study. None of
our students know poi, but they used other libraries such as lucene.

In total, we prepare twenty tasks. We consider the popular features of the
poi library so that (1) the tasks reflect more common real-world development
scenarios, and (2) there are more overlaps between extracted usage samples
from different sources and thus we can have a basis to compare their effec-
tiveness. Table 6 shows the tasks. As listed in “Description”, our tasks cover
various functionalities of poi. Before the study, the authors wrote the gold
standards and the test cases for all the tasks. As shown in Column “LOC”,
it typically needs only several lines of code to implement our tasks. Our tasks
do not involve complicated algorithms, because they are designed to evaluate

18 Hao Zhong, Xiaoyin Wang

Table 5: The backgrounds of our students.

student 1 student 2 student 3 student 4

experience 7 10 6 6
Java 1 7 2 5

language

C C C C
Python Java C++ C++

Java Python Java Java

two API learning sources. Columns “Class” and “Method” list the number of
required POI classes and methods, respectively. As shown in Column “Test”,
a task can have more than one test case. For example, the first task sets the
username and password to a record. One test case checks the username, and
the other checks the password. We released our programming tasks on our
website. In some programming tasks, programmers need to manipulate files,
and the correctness of their outputs depends on the contents of these files. To
support the replication of our study, we release these files with our tasks.

Compared treatments. This evaluation explores the impacts of two
treatments. In the first treatment, the students are asked to search code sam-
ples from SearchCode. In the second treatment, the students are asked to
search for code samples from a local repository. This repository contains our
samples that were synthesized from the API code of poi. Researchers [59] re-
port that programmers may not find the useful APIs of a programming task,
but they cannot build a query without knowing a useful API. In practice, pro-
grammers usually know which library they use and search API usages for this
library. As a start, to allow the students building queries, we give a useful poi
class for each task. Indeed, each task name is ended with the poi class name.
As no student is familiar with poi, to help them construct queries, they are
allowed to browse the API documentation of poi.

Onsite setting. Before the evaluation, the first author introduced the
desired functionalities of all the tasks, SearchCode, and Junit to the students.
The students were told that all the programming tasks involved no complicated
algorithms, but were designed to call proper poi APIs. The students are asked
not to modify or fool the test code. The students were grouped into two teams
based on their Java programming experiences. The students and tasks have
differences. For example, a student can construct better queries than other
students. To eliminate the differences, we asked two teams to complete half
of the tasks under both treatments. In particular, this evaluation is split into
two phases. In the first phase, for the top ten tasks, Team A applied the first
treatment, and Team B applied the second treatment. In the second phase, for
the bottom ten tasks, we switched the treatments of the two teams. In each
phase, students were allowed to ask questions about the desired functionalities
of tasks, and they were asked to implement the tasks independently.

We set the time limit of each phase as 90 minutes. On average, each task has
only 9 minutes. In industrial developments, programmers often have to learn
API usages in a short time. We set a short time limit to put more pressure,
which is close to the situation of industrial developments.

An Empirical Study on API Usages from Code Search Engine and Local Library 19

Table 6: Our programming tasks.

Task Description LOC Class Method Test

1 set the username and password to a record 2 2 3 2
2 add the data as a record 7 3 3 3
3 get the footer and header of a record stream 8 5 2 2
4 read an encrypted file 8 3 2 3
5 get the type of a file 6 1 2 1
6 get the styles of a shape 3 1 7 3
7 get the styles of a file 12 3 5 2
8 get the sound and info in a powerpoint file 8 1 4 4
9 parse the constants of the data 2 3 1 4

10 get the contents of a sheet 9 3 7 4
11 get the comment at a cell 3 3 2 2
12 analyze an ecripted word file 20 5 9 4
13 obtain the id and content of a record 5 3 5 3
14 set the password of a workbook 2 1 2 1
15 obtain the fragment names of a sheet 3 2 5 2
16 add a picture to a powerpoint file 23 3 5 2
17 get the place holder of a shape 1 1 1 1
18 get the document summary of a file 12 5 2 4
19 find the chart inside a slide 6 3 1 3
20 get the summary of a word file 21 6 4 4

3.5.2 Result

Table 7 shows the results. In Column “Result”,
√

denotes that the second
treatment is better than the first treatment; × denotes that the first treat-
ment is better than the second treatment; and - denotes that there are no
differences. In four tasks, the students achieved better results with samples
from library code than those with Internet code. We interviewed the students.
Their feedbacks are as follows:

1. The students failed to retrieve useful samples for some tasks,
although SearchCode has a huge repository. For example, in the 5th
task, the students used FileMagic to query both tools. SearchCode retrieved 17
samples, but none calls poi APIs. Meanwhile, from library code, the students
retrieved 51 samples for this API. As a result, a student learns how to complete
this task in the second setting.

2. The students retrieved useful samples for other tasks, but they
are not ranked at the top. For example, in the 8th task, the students used
HSLFSlideShow to query SearchCode. It retrieved three pages of code samples,
but the useful ones were not ranked on the first page.

The results lead to our finding:

Finding 5. In tasks where both sources can provide API usage samples,
there is no significant difference between complete tasks.

Researchers have proposed various approaches to retrieve useful code sam-
ples from code repositories (see Section 5). The purpose of our study is to com-
pare two sources of API usages, but not those recommendation approaches (see
Sections 4 and 5 for more discussions). As a result, in our study, we provide

20 Hao Zhong, Xiaoyin Wang

Table 7: The results from the 4 students.

Task
Team A Team B

Resultstudent 1 student 2 student 3 student 4

1 1 2 2 2
√

2 2 1 0 0 ×
3 0 0 0 0 —
4 0 0 0 0 —
5 0 0 0 1 —
6 0 0 0 0 —
7 0 0 0 0 —
8 0 0 0 1

√

9 0 0 0 0 —
10 0 0 0 0 —
11 2 2 0 0

√

12 0 0 0 0 —
13 0 0 0 0 —
14 0 0 0 0 —
15 0 0 0 0 —
16 0 0 0 0 —
17 1 0 0 0

√

18 0 0 0 0 —
19 0 0 0 0 —
20 0 0 0 0 —

The cells with the grey background show the passing test cases of the first treatment
(Internet code), and the cells with the white background show the results of the second
treatment (library code).

only the state-of-the-practice tool support. In particular, when the students
search API documents and library code, they use “Find in Files” that is pro-
vided by text editors. Although SearchCode has a textual interface, it is not
designed for natural language queries. For example, we use “poi set the given
user and password” as the keyword to search SearchCode, but from the first
page, we find no code samples that use poi. To retrieve useful code samples
from both sources, programmers must construct effective queries by them-
selves, and identify useful API names. The students tried many queries, but
seldom successfully identified all the useful API names for our programming
tasks. As there were so many, we did not record all the queries.

As shown in Table 6, 5 out of our 20 tasks involve only single API classes.
API documents can provide more useful information for the 5 tasks (5, 6, 8,
14, and 17), but Table 7 shows that the students resolved only the 5th task.
We find two possible reasons. First, API documents are organized in a concise
format, but can be unfriendly to readers. For example, the 6th task involves
the following call chain:

1 public void g e t c o l o r s (XSLFAutoShape as) {
2 f i l l S t y l e = as . g e t F i l l S t y l e () . getPaint () ; . . .
3 }

The API document of XSLFAutoShape lists only two irrelevant methods. As
the getFillStyle() method is declared by a superclass, XSLFSimpleShape, the stu-
dents did not notice this method. Second, API documents can contain some

An Empirical Study on API Usages from Code Search Engine and Local Library 21

specialized vocabulary. For example, the 5th task involves the FileMagic class.
The API document of the valueOf() method is as follows:

1 Get the f i l e magic o f the supp l i ed F i l e

Only a student understands that the file magic refers to the type of a file.
As a result, only this student successfully completed this task.

3.6 Threat to Validity

The internal threat to validity includes the internal techniques of CodeEx.
For library code, as CodeEx aggressively removes API calls, we can underes-
timate covered APIs from library code. Most code samples from code search
engines are not compilable, since they are partial and do not ship with their
dependencies. As a result, CodeEx cannot remove their internal usages by
removing compilation errors. As the internal usages from Internet code are
not removed, internal calls in Internet code can be misleading in our human
study, and we can overestimate covered APIs from Internet code. Still, the
impacts shall be minor, since Table 3 shows that about 80% of library source
files do not have any internal calls and most Internet samples are client code.
As CodeEx extracts API usages through static analysis, it ignores dynamic
calls [17], and this limitation reduces covered API usages from both sides. It is
difficult to extract such usages from Internet code, since it is often infeasible to
execute such code due to compilation errors. Nevertheless, we did not conclude
that library code is the replacement of Internet code or vice versa. Instead,
our study shows that the two sources complement each other. The internal
threat to validity also includes the programming skills of our students. Our
students are not professional programmers, and their programming skills are
insufficient to unleash the potential of either tool. As a result, 14 tasks are not
accomplished in either treatment. The threats to external validity include our
limited subjects, students, and tasks. As human studies are too expensive, we
can only invite four students and prepare limited tasks. However, the trend
of our study is already clear, and the trend may not change, if the scale is
enlarged. Our quantity studies show that libraries contain richer API usages
than the samples from code search engines, but our human study shows that
richer API usages alone are insufficient to guarantee better assistance results.
We have released all the programming tasks on our project website. Other re-
searchers can replicate our study to reduce the threat. The threats to external
validity also include our selected code search engine. Although SearchCode is
popular, other code search engines (e.g., GitHub) can achieve better results.
This thread can be reduced by introducing more code search engines.

4 Benefit and Challenge

In this Section, we discuss the challenges and benefits:

22 Hao Zhong, Xiaoyin Wang

Benefit 1. Libraries provide API samples for those new and less
popular APIs. Our study explains why programmers often cannot find useful
API samples, since Finding 1 shows that only 9.3% API classes have up-to-
date code samples on average. Finding 2 shows that the samples from library
code cover four times more API classes, which are useful to learn API usages,
especially for those new and less popular APIs.

Benefit 2. Different sources complement each other, and are bene-
ficial to various approaches. Researchers have proposed various approaches
that recommend samples from local [75,59,28] and Internet [42,13,31,46] repos-
itories. Furthermore, some approaches can mine and recommend API pat-
terns [75,53,52] from such repositories. Besides Internet and library code, test
code [77,23,25], StackOverflow [67,69,68], API tutorials [63,50,57], the past
code in commit histories [74], and API documents [72] also illustrate API us-
ages. Zhong et al. [71] show that library code and its documents often define
different API usages. Finding 2 shows that libraries cover more API usages
than Internet repositories, and Finding 4 shows that API usages from libraries
and Internet repositories complement each other. All the above studies and
our findings show that the API usages from multiple sources complement each
other, and some early explorations already use multiple sources (e.g., Zeng et
al. [66]). Furthermore, Tung et al. [61] propose an approach to recommend
libraries for a given project. Their approach is useful, if users do not know
which libraries should be included in their scenarios.

Challenge 1. It is challenging to trim down source files to illus-
trate the usages of specific APIs. Compared to samples from tutorials
or StackOverflow, it is more challenging for programmers to learn API usages
from source files, since these files present many irrelevant implementation de-
tails. A useful code sample shall be concise [18], complete [30], and easy to
understand [65], but most code samples are not written to illustrate API us-
ages. The prior approaches [18,30] can derive better code samples. After some
extensions, the above approaches can also improve the code quality of API
samples from library code.

Challenge 2. It is challenging to improve the quality of code sam-
ples. As the source files from code search engines and local libraries are not
written to illustrate API usages, API usages in these files are often incomplete
and scattered in multiple methods. In our study, we remove obsolete usages
from code search engines and internal calls from library code. Although our
treatments ensure the fairness of our comparison, there are research opportu-
nities to improve the quality of code samples. For example, it can be feasible
to replace internal calls with corresponding APIs. As another example, al-
though the API usages from individual source files are incomplete, Buse and
Weimer [18] infer API tutorials from multiple source files. The above directions
can improve the code quality of source files as API examples, so programmers
can better learn API usages.

An Empirical Study on API Usages from Code Search Engine and Local Library 23

5 Related Work

Our study is related to the following topics.

Empirical studies on API usages. Researchers have conducted various
empirical studies on API usages. Linares-Vásquez et al. [35] analyze the API
patterns that are related to energy usages. Zhong and Mei [70] analyze API
usages to learn their suitable formats of specifications. McDonnell et al. [41]
analyze API adoptions in Android applications. Piccioni et al. [47] analyze
the usability of APIs. Brito et al. [16] analyze the replacements of deprecated
APIs. Monperrus et al. [44] analyze the directives in API documents. The prior
studies analyze API usages in client code, and we are the first to analyze API
usages inside library code. It can be interesting to replicate their studies on
library code, and the replication can lead to insightful results.

Code search engines. Researchers have proposed various code search
engines [13,42,19,48,34,38]. The above search engines provide richer interfaces
to query code samples. For example, Reiss [48] allows searching through a user-
defined template, and McMillan et al. [42] support searching through a given
example. As research tools, it is difficult to build a repository as large as
SearchCode has. As a result, some researchers build their tools on commercial
code search engines. For example, Asyrof et al. [12] improve the GitHub code
search with type matching, and Thummalapenta and Xie [60] improve the
Google code search (a retired code search engine) to collect code samples whose
input and output types are as expected. As the repository of SearchCode is
larger than most of the above engines, we are unlikely to underestimate APIs
that are covered by Internet code, but with these tools, our students can
complete more tasks.

Code recommendation. To retrieve better samples, researchers pro-
posed various query interfaces. For example, Tansalarak and Claypool [59]
allow querying with a pair of input and output types. It is difficult for novice
programmers to construct queries. To assist such programmers, researchers
explored recommending code samples by the programming contexts under de-
velopment [28,75]. When programmers are writing code, their programming
contexts can be incomplete. Zhou et al. [76] use a language model to synthesize
code, and search for the clones of synthesized code. Although synthesized code
can contain errors, they served as the programming contexts to search for real
code. Ghafari and Moradi [24] implement a benchmark to evaluate code rec-
ommendation tools. Nguyen et al. [45] recommend code samples for handling
exceptions. Besides code repositories, researchers also explored other sources
like StackOverflow threads [31]. Given code repositories as inputs, researchers
further mine various models to synthesize code [15,62,21] or code hints (e.g.,
next APIs [36]). Based on our results, library code is a useful source for the
above approaches, which can unleash the potential of library code.

24 Hao Zhong, Xiaoyin Wang

6 Conclusion

Programmers mainly use Internet code from code search engines to learn API
usages. Although code search engines provide Internet-scale repositories, pro-
grammers still complain that it is difficult to learn API usages, especially for
those new and unpopular ones. As code search engines already have millions
of projects in their repositories, it is less useful to add more projects. Instead,
researchers have illustrated that library code also contains interesting and con-
cise API usages. Although library code is beneficial, it is challenging to analyze
its API usages, since library code can contain internal usages. As a result, ana-
lyzing library code directly overestimates the API usages from library code. To
handle the problem, in this paper, we implement a support tool, and conduct
the first empirical studies on self-API usages inside five libraries. We summa-
rize our results in six findings, and provide our insights on the benefits and
challenges. As for its benefits, library code contains much richer API usages
than Internet code, but as challenges, it needs more advanced techniques to
unleash the potential of API usages inside libraries.

Acknowledgments

We appreciate reviewers for their insightful comments. Hao Zhong is spon-
sored by the National Nature Science Foundation of China No. 62232003 and
62272295. Xiaoyin Wang is supported in part by NSF Grant CCF-1846467.

References

1. accumulo. https://accumulo.apache.org (2019)
2. cassandra. http://cassandra.apache.org (2019)
3. Guice. https://searchcode.com/api/ (2019)
4. JDT. http://www.eclipse.org/jdt/ (2019)
5. karaf. https://karaf.apache.org (2019)
6. lucene. https://lucene.apache.org (2019)
7. poi. https://poi.apache.org (2019)
8. The searchcode engine. https://searchcode.com/ (2019)
9. cassandra archive. http://archive.apache.org/dist/cassandra (2020)

10. Tha API documents of accumulo 1.9. https://accumulo.apache.org/1.9/apidocs/

(2020)
11. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proc. 29th POPL, pp.

4–16 (2002)
12. Asyrofi, M.H., Thung, F., Lo, D., Jiang, L.: Ausearch: Accurate API usage search in

github repositories with type resolution. In: Proc. SANER, pp. 637–641 (2020)
13. Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.: Sourcerer:

a search engine for open source code supporting structure-based search. In: Companion
to Proc. OOPSLA, pp. 681–682 (2006)

14. Bian, P., Liang, B., Shi, W., Huang, J., Cai, Y.: Nar-miner: discovering negative asso-
ciation rules from code for bug detection. In: Proc. ESEC/FSE, pp. 411–422 (2018)

15. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches and
litmus tests. In: Proc. PLDI, pp. 467–481 (2017)

https://accumulo.apache.org
http://cassandra.apache.org
https://searchcode.com/api/
http://www.eclipse.org/jdt/
https://karaf.apache.org
https://lucene.apache.org
https://poi.apache.org
https://searchcode.com/
http://archive.apache.org/dist/cassandra
https://accumulo.apache.org/1.9/apidocs/

An Empirical Study on API Usages from Code Search Engine and Local Library 25

16. Brito, G., Hora, A., Valente, M.T., Robbes, R.: On the use of replacement messages in
api deprecation: An empirical study. Journal of Systems and Software 137, 306–321
(2018)

17. Bruce, B.R., Zhang, T., Arora, J., Xu, G.H., Kim, M.: Jshrink: In-depth investigation
into debloating modern java applications. In: Proc. ESEC/FSE, pp. 135–146 (2020)

18. Buse, R.P., Weimer, W.: Synthesizing api usage examples. In: Proc. ICSE, pp. 782–792
(2012)

19. Chatterjee, S., Juvekar, S., Sen, K.: Sniff: A search engine for java using free-form
queries. In: Proc. FASE, pp. 385–400 (2009)

20. Dagenais, B., Hendren, L.J.: Enabling static analysis for partial Java programs. In:
Proc. OOPSLA, pp. 313–328 (2008)

21. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-driven
learning. In: Proc. PLDI, pp. 420–435 (2018)

22. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from
dynamic traces. In: Proc. ESEC/FSE, pp. 339–349 (2008)

23. Ghafari, M., Ghezzi, C., Mocci, A., Tamburrelli, G.: Mining unit tests for code recom-
mendation. In: Proc. ICPC, pp. 142–145 (2014)

24. Ghafari, M., Moradi, H.: A framework for classifying and comparing source code rec-
ommendation systems. In: Proc. SANER, pp. 555–556 (2017)

25. Ghafari, M., Rubinov, K., Pourhashem K, M.M.: Mining unit test cases to synthesize
api usage examples. Journal of software: evolution and process 29(12), e1841 (2017)

26. Hassan, F., Wang, X.: HireBuild: An automatic approach to history-driven repair of
build scripts. In: Proc. ICSE, pp. 1078–1089 (2018)

27. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software.
In: Proc. 34th ICSE, pp. 837–847 (2012)

28. Holmes, R., Murphy, G.C.: Using structural context to recommend source code exam-
ples. In: Proc. 27th ICSE, pp. 117–125 (2005)

29. Kawrykow, D., Robillard, M.P.: Improving API usage through automatic detection of
redundant code. In: Proc. ASE, pp. 111–122 (2009)

30. Keivanloo, I., Rilling, J., Zou, Y.: Spotting working code examples. In: Proc. ICSE, pp.
664–675 (2014)

31. Kim, K., Kim, D., Bissyandé, T.F., Choi, E., Li, L., Klein, J., Traon, Y.L.: Facoy: a
code-to-code search engine. In: Proc. ICSE, pp. 946–957 (2018)

32. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update their
library dependencies? Empirical Software Engineering 23(1), 384–417 (2018)

33. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining. In: Proc.
ASE, pp. 81–92 (2015)

34. Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Morla, R.S., Masiero, P.C., Baldi, P.,
Lopes, C.V.: Codegenie: using test-cases to search and reuse source code. In: Proc.
ASE, pp. 525–526 (2007)

35. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M., Poshy-
vanyk, D.: Mining energy-greedy api usage patterns in android apps: an empirical study.
In: Proc. MSR, pp. 2–11 (2014)

36. Liu, X., Huang, L., Ng, V.: Effective api recommendation without historical software
repositories. In: Proc. ASE, pp. 282–292 (2018)

37. Lo, D., Khoo, S.C.: Smartic: Towards building an accurate, robust and scalable speci-
fication miner. In: Proc. ESEC/FSE, pp. 265–275 (2006)

38. Lv, F., Zhang, H., Lou, J.g., Wang, S., Zhang, D., Zhao, J.: Codehow: Effective code
search based on api understanding and extended boolean model (e). In: Proc. ASE, pp.
260–270 (2015)

39. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to navigate
the API jungle. In: Proc. PLDI, pp. 48–61 (2005)

40. Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: Proc.
ESEC/FSE, pp. 96–106 (2015)

41. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption in
the android ecosystem. In: Proc. ICSM, pp. 70–79 (2013)

42. McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C., Xie, Q.: Exemplar: A source code
search engine for finding highly relevant applications. IEEE Transactions on Software
Engineering 38(5), 1069–1087 (2011)

26 Hao Zhong, Xiaoyin Wang

43. Michail, A.: Data mining library reuse patterns using generalized association rules. In:
Proc. ICSE, pp. 167–176 (2000)

44. Monperrus, M., Eichberg, M., Tekes, E., Mezini, M.: What should developers be aware
of? an empirical study on the directives of api documentation. Empirical Software
Engineering 17(6), 703–737 (2012)

45. Nguyen, T., Vu, P., Nguyen, T.: Code recommendation for exception handling. In: Proc.
ESEC/FSE, pp. 1027–1038 (2020)

46. Niu, H., Keivanloo, I., Zou, Y.: Learning to rank code examples for code search engines.
Empirical Software Engineering 22(1), 259–291 (2017)

47. Piccioni, M., Furia, C.A., Meyer, B.: An empirical study of API usability. In: Proc.
ESEM, pp. 5–14 (2013)

48. Reiss, S.P.: Semantics-based code search. In: Proc. ICSE, pp. 243–253 (2009)
49. Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empirical Software

Engineering 16(6), 703–732 (2011)
50. Sadowski, C., Stolee, K.T., Elbaum, S.: How developers search for code: a case study.

In: Proc. ESEC/FSE, pp. 191–201 (2015)
51. Saied, M.A., Abdeen, H., Benomar, O., Sahraoui, H.: Could we infer unordered api

usage patterns only using the library source code? In: Proc. ICPC, pp. 71–81 (2015)
52. Saied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D.: Improving reusability

of software libraries through usage pattern mining. Journal of Systems and Software
145, 164–179 (2018)

53. Saied, M.A., Raelijohn, E., Batot, E., Famelis, M., Sahraoui, H.: Towards assisting de-
velopers in api usage by automated recovery of complex temporal patterns. Information
and Software Technology 119, 106213 (2020)

54. Sawant, A.A., Robbes, R., Bacchelli, A.: On the reaction to deprecation of 25,357 clients
of 4+1 popular Java APIs. In: Proc. ICSME, pp. 400–410 (2016)

55. Scaffidi, C.: Why are APIs difficult to learn and use? Crossroads 12(4), 4–4 (2005)
56. Sim, S.E., Umarji, M., Ratanotayanon, S., Lopes, C.V.: How well do search engines

support code retrieval on the web? ACM Transactions on Software Engineering and
Methodology 21(1), 1–25 (2011)

57. Stolee, K.T., Elbaum, S., Dobos, D.: Solving the search for source code. ACM Trans-
actions on Software Engineering and Methodology 23(3), 1–45 (2014)

58. Sven, A., Nguyen, H.A., Nadi, S., Nguyen, T.N., Mezini, M.: Investigating next steps
in static API-misuse detection. In: Proc. MSR, pp. 265–275 (2019)

59. Tansalarak, N., Claypool, K.: XSnippet: Mining for sample code. Proc. 21st OOPSLA
pp. 413–430 (2006)

60. Thummalapenta, S., Xie, T.: PARSEWeb: a programmer assistant for reusing open
source code on the web. In: Proc. 22nd ASE, pp. 204–213 (2007)

61. Thung, F., Lo, D., Lawall, J.: Automated library recommendation. In: Proc. WCRE,
pp. 182–191 (2013)

62. Wang, Y., Dong, J., Shah, R., Dillig, I.: Synthesizing database applications for schema
refactoring. In: Proc. PLDI, p. to appear (2019)

63. Xia, X., Bao, L., Lo, D., Kochhar, P.S., Hassan, A.E., Xing, Z.: What do developers
search for on the web? Empirical Software Engineering 22(6), 3149–3185 (2017)

64. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API
rules from imperfect traces. In: Proc. 28th ICSE, pp. 282–291 (2006)

65. Ying, A.T., Robillard, M.P.: Selection and presentation practices for code example sum-
marization. In: Proc. ESEC/FSE, pp. 460–471 (2014)

66. Zeng, H., Chen, J., Shen, B., Zhong, H.: Mining API constraints from library and client
to detect API misuses. In: Proc. APSEC, pp. 161–170 (2021)

67. Zhang, H., Wang, S., Chen, T.H.P., Zou, Y., Hassan, A.E.: An empirical study of ob-
solete answers on stack overflow. IEEE Transactions on Software Engineering (2019)

68. Zhang, N., Zou, Y., Xia, X., Huang, Q., Lo, D., Li, S.: Web APIs: Features, issues,
and expectations–a large-scale empirical study of Web APIs from two publicly acces-
sible registries using stack overflow and a user survey. IEEE Transactions on Software
Engineering (2022)

69. Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M.: Are code examples on
an online q&a forum reliable?: a study of api misuse on stack overflow. In: Proc. ICSE,
pp. 886–896 (2018)

An Empirical Study on API Usages from Code Search Engine and Local Library 27

70. Zhong, H., Mei, H.: An empirical study on API usages. IEEE Transactions on Software
Engineering 45(4), 319–334 (2019)

71. Zhong, H., Meng, N., Li, Z., Jia, L.: An empirical study on API parameter rules. In:
Proc. ICSE, pp. 899–911 (2020)

72. Zhong, H., Su, Z.: Detecting API documentation errors. In: Proc. OOPSLA, pp. 803–816
(2013)

73. Zhong, H., Wang, X.: Boosting complete-code tools for partial program. In: Proc. ASE,
pp. 671–681 (2017)

74. Zhong, H., Wang, X., Mei, H.: Inferring bug signatures to detect real bugs. IEEE
Transactions on Software Engineering 48(2), 571–584 (2022)

75. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending API
usage patterns. In: Proc. 23rd ECOOP, pp. 318–343 (2009)

76. Zhou, S., Shen, B., Zhong, H.: Lancer: Your code tell me what you need. In: Proc. ASE,
pp. 1202–1205 (2019)

77. Zhu, Z., Zou, Y., Xie, B., Jin, Y., Lin, Z., Zhang, L.: Mining API usage examples from
test code. In: Proc. ICSME, pp. 301–310 (2014)

	Introduction
	Methodology
	Empirical Result
	Benefit and Challenge
	Related Work
	Conclusion

