Understanding Commercial Low-code App Bugs

Hadia Syed*, Zhixing He*, Ye Tang*, Jiging Liu*, Shengjie Chen®, Lixin Sun® and Hao Zhong*T
*School of Computer Science, Shanghai Jiao Tong University, China
{hadiasyed, chandlr, tangye_22, vincent_ljq, zhonghao} @sjtu.edu.cn
§Inspur, China
{chenshj, sunlixin} @inspur.com

Abstract—As a paradigm of end-user programming, low-
code development has attracted attention from academics and
enterprises. Consulting firms estimate that this paradigm can
have great business value and that many large enterprises can
switch to low-code development. To understand the emerging
paradigm, researchers conducted various empirical studies about
low-code development. Still, most studies analyze bugs in low-
code development platforms. Although these studies are related,
low-code development platforms are classical programs, not low-
code applications. Several other studies analyze how program-
mers perceive low-code applications, but do not provide direct
analysis. As low-code applications are typically commercial, most
low-code projects are not open source. It is difficult to collect the
subjects, and many questions are still open.

In this paper, we propose the first study on bugs in low-
code applications. To overcome the above-mentioned challenge,
we collect 8 actively maintained low-code projects from our
industrial partner. From the 8 projects, we collected 248 bugs
from our industrial partner and analyzed their symptoms,
causes, and repairs. Our study derives 7 interesting findings.
For instance, we find that 78.23% of low-code bugs are related
to human-computer interactions. The result indicates that GUI
testing can be critical in detecting bugs in low-code applications.
As another example, we find that even if programs are developed
on low-code platforms, modifying source files is necessary to fix
78.23% of low-code bugs.

Index Terms—Low-code application bug and empirical study

I. INTRODUCTION

The demand for software systems increases rapidly, but
software employees have not been growing at a sufficient
pace [1]. As a result, it is difficult for many companies to
hire sufficient professional programmers [2]. To reduce the
requirement for programming expertise, end-user program-
ming [3] has long been a hot topic. As a paradigm of end-user
programming, some early discussions about low-code devel-
opment can be traced to 2014 [4]. Compared with the classical
paradigm, the low-code paradigm prefers low-code alternatives
for fast, continuous, and test-and-learn delivery. Low-code
development attracts much attention from researchers and
practitioners. Consulting firms release positive reports about
low-code development. For instance, a Forrester report [5]
estimates that the market of low-code development will reach
$21 billion by 2022, and a Gartner report [6] estimates that
65% of large enterprises will switch to low-code development
to some extent by 2024. In 2025, Mendix surveyed more than
2,000 technical leaders, and their results [7] show that 98%

T Corresponding author: Hao Zhong (email: zhonghao@sjtu.edu.cn).

of enterprises now use low-code platforms and tools in their
development processes.

Researchers conducted various empirical studies on this
emerging paradigm, and their studies can be roughly divided
into two research lines. The first line of studies [8], [9] an-
alyzes the characteristics of low-code development platforms
(LCDPs). LCDPs provide IDEs, frameworks, and runtimes for
low-code applications (LCAs). Although LCDPs support the
development of LCAs, they themselves are not LCAs. Their
findings do not show the characteristics of LCAs. The other
line of studies [10], [11], [12] analyze Stack Overflow posts
that discuss LCAs and LCDPs. Although their findings include
opinions on LCAs, they are indirect and do not include the
characteristics of LCA bugs. As most LCAs are developed in
large enterprises and have significant business value, there are
barely any LCAs in open-source communities, e.g., GitHub.
This is a major barrier to understanding the bugs in LCAs. As
a result, no prior study has ever analyzed LCA bugs.

In this paper, we present the first empirical study on
LCA bugs. To overcome the limitation of prior studies, we
collect 8 commercial LCAs through our enterprise partner, and
all 8 applications are under active maintenance. From these
applications, we collected 248 bugs and manually analyzed
their symptoms, causes, repairs, and associations. Our study
explores the following research questions:

o RQI1. What are the symptoms?

Motivation. The symptoms are useful for understanding
the impact of LCA bugs on users.

Protocol. We read bug reports and commit messages to
build the taxonomy of symptoms.

Answer. 78.23% of LCA bugs have symptoms in human-
computer interactions (Finding 1). For the internal LCA
bugs, 11.69% and 5.24% of bugs are about functionalities
and wrong data, respectively (Finding 2).

o RQ2. What are the causes?

Motivation. The results are useful for improving the
quality of LCAs and detecting LCA bugs.

Protocol. We read bug reports and buggy source files to
build the taxonomy of causes.

Answer. 70.56% of LCA bugs are caused by the lack of
project-specific knowledge (Finding 3), and the remaining
bugs (29.44%) are introduced due to the lack of domain-
specific knowledge (Finding 4).

+ RQ3. What are the repairs?

Motivation. The results are useful for understanding how

a_| Pages/Pagel v

Table1
€ Queries | {}Js % ur
Editor prag & drop Ul elements x

Q
Connect your data or use sample data to display table

v Suggested

Eéj AL T

Tabte Input Text

Drag the Table Widget

(a) Drag and drop widgets (b) The canvas
[Q] Tablel ot
Connect to query >
@ getusers o °

Content Style

Chqf
B Select getUsers query A Data R

Table data s
0 sample movies °

Open Connect data dropdown

(d) Bind data

Other actions

+ Connect new datasource

(c) Select data query

Fig. 1. Reusable components of LCDP.

to fix bugs in LCAs.

Protocol. We read bug reports and patches to understand

the taxonomy of repairs.

Answer. In 88.31% of LCA bugs, modifying source code

is essential (Finding 5). For the remaining bugs, changing

enable conditions and modifying GUI settings repair

8.06% and 3.62% of LCA bugs, respectively (Finding 6).
« RQ4. What are the correlations between symptoms,

causes, and repairs?

Motivation. The results are useful for diagnosing the

symptoms, causes, and repairs of LCA bugs.

Protocol. We calculate the distributions of symptoms,

causes, and repairs. We then calculate their correlations.

Answer. Finding 7 shows that most causes have strong

correlations with specific repairs.

Section II motivates our study, and Section V interprets the
significance of our findings.

II. MOTIVATING EXAMPLE

This section introduces the differences between LCDPs and
classical IDEs (Section II-A), a LCA bug (Section II-B), and
the comparison with prior studies (Section II-C).

A. LCDP

LCDPs provide more reusable components than classical
IDEs [13]. With their support, even non-professionals can
quickly build the sketch of an application. For instance,
Appsmith [14] is a popular LCDP, and Figure 1 shows the
workflow of building a simple application with Appsmith. This
application has a table to present some data. As shown in
Figure 1(a), a programmer can drag a table and drop it to the
application. By clicking this table, as shown in Figures 1(c)
and (d), the programmer can bind a database connection to this

JS JSObject1 #

Code Settings

v export default {
getBackground: (gender) =>
if (gender == 'male') return "#42f587";

+ New widget g
2
3
4 else if (gender == ‘female') return “#f5e942";
5
6
7

B userable =]
“ B Form

T Text1

else return "#f57b42";

o Buttonl

(a) Select the JS tab

b
(b) Click the +New JS Object (c) Define getBackend: (gender) function
t formatting userTable

>

gender latitude fongitude dob

female -23.2768 m.777 1962-

male 36.032 -22.1341 1988

male 351077 1243599 1958

(9 : =

55,9604 -168.6133 1995

asobjects male -36.1083 51.8985 1978

X

(d) Select the gender column (e) Call the function (f) The new interface

Fig. 2. An example of human-written code in LCDP.

table. After the programmer selects a suitable connection, this
application can automatically retrieve the data for the table.

Although LCDPs reduce the effort of programming, they
allow programmers to write code to implement customized
logic. For instance, Figure 2 is a simplified tutorial of App-
smith [15]. As shown in Figure 2(a) and (b), a programmer
can click the “JS” tab to implement the functionality of
“New JS Object”. Figure 2(c) shows the implemented method
called getBackground (). This method returns a specific
hexadecimal color based on the given gender. As shown in
Figure 2(d) and (e) the programmer can select the table and
click the setting of the background color property. In this
way, the developer can add a short JavaScript code to invoke
the getBackground () method. As shown in Figure 2(f),
the gender cells of the built table have different background
colours according to their contents.

B. LCA Bug

Although LCDP reduces the effort of implementing LCAs,
LCAs can still have bugs. For instance, ***sfndpr is an LCA
of water pricing systems. It supports submitting and publishing
price policies. Figure 3 shows a bug in this LCA. In this table,
each row presents a price policy. In particular, the first row
lists a pricing policy for low-income families. The columns
of this table list IDs and other details. The buttons above the
table implement various functionalities like adding, deleting,
and modifying the policy. In particular, a junior user can
submit a price policy for approval by clicking the “Submit
for approval” button. Before a policy is published, a senior
user must approve it. Before senior users approve a policy,
this policy shall not be published. However, due to this bug,
in the second row, a policy is published before it is approved.

To manage the status of a price policy, programmers imple-
ment an automaton as follows:

publishPolicy () { ...
if (uiState [*ids’]. length != 0) {...
if (uiState [*ids”]. length != 0){
action$ = this . beActionService.invokeAction(” policystatechange *) ;
ids = uiState [*ids’ |;
. /I return }}

[N

Default Filter v

Name Price Version

Price Policy

No. ID Name File ID Type
1 20230811006 Minimum Guarantee Policy ered Policy

2 20230802001 Tiered Policy 1

Fig. 3. A wrong

The publishPolicy function in the above code snippet
handles the action of clicking the “Publish” button. In partic-
ular, Line 2 of this method determines whether the “Publish”
button should be enabled. This line only checks whether the
state length is zero, but does not check the state of the policy.
As a result, a policy can be published before it is approved.

To fix this bug, the programmer adjusts the state transitions
of the above automaton as follows:

1| publishPolicy () { ...

2 let ids = [];

3 if (uiState [*ids’]. length != 0){

4| - ids = uiState ["ids’ |;

50+ uiState [rows’]. forEach((row, idx, array) =>{

6|+ if (row[" billstate *]. billState == "Approved’){

7|+ ids . push(row[’id"]) ;

8|+

9|+ b

10 const body = {

11 ids: ids,

12

13

14 const action$ = this .beActionService . invokeAction(’
policystatechange °, ..., body);

15 . [/l return

16| }

In the code above, publishPolicy is responsible for
determining which policies can transition to the “Published”
state. The original implementation incorrectly assigned all
policy IDs from uiState[’ids’] without checking their
approval status, allowing unapproved policies to be published.
In the fix, the programmer adds logic to filter the policies
based on their state. Specifically, the new code iterates over
uiState[’ rows’] and only includes policies with the bill-
State set to “Approved”. This ensures that only approved poli-
cies are collected in the ids array, which is subsequently used
for publishing. Consequently, the corrected implementation
enforces the expected state progression, preventing the direct
publication of unapproved policies.

As shown in Sections II-A, programmers write much fewer
lines of code when implementing LCAs. As a result, many
bugs in classical applications may not appear in LCAs. Even
if some bugs appear in LCAs, their shapes can be different
from classical applications as shown in Section II-B. Although
researchers have built various bug taxonomies (See Section VI
for details), it is interesting to build a taxonomy for the new
programming paradigm of LCAs.

C. Comparison

Only three studies [10], [11], [12] analyze LCSDs, and none
of them analyzes LCA bugs directly. Our study is novel in
terms of its subjects, analysis methodology, and findings:

@ 0

= =

Price Status

m Edit View Delete Submit Cancel Submissior Process

Tiered Pricing Version Document Status| Status

Yes 000003 Approved Published

Published

Yes 000001

procedure bug.

1. Subjects. The prior studies do not analyze LCA bugs but
the posts from Stack Overflow [10], [11], [12] and Reddit [10].
As a comparison, we analyze real-world LCA bugs that are
collected from a reputable enterprise. While their subjects
convey personal experience and second-hand knowledge, our
real-world LCA bugs make our study more reliable.

2. Protocols. The prior studies analyze Stack Overflow
and Reddit posts, but LCA bugs and their programming
contexts are seldom mentioned in such posts. In contrast,
when analyzing LCA bugs, we have full access to all details.
For instance, in Section II-B, we can analyze the symptoms,
the causes, and the repairs of LCA bugs. In addition, when
they analyze posts, it is difficult to obtain feedback from the
authors, but we can ask LCA programmers for feedback.

3. Mutually corroborating findings. Despite the different
subjects and protocols, we have some mutually corroborating
findings. For instance, Luo et al. [10] report that the top
languages in LCAs are Java and JavaScript. Table I shows
that our LCA subjects have many Java and script source
files. As another example, Luo et al. [10] report that APIs
and templates are the most interesting domain knowledge in
developing LCAs. Our identified ID mismatch bugs can be
caused by the inconsistencies between API calls and template
definitions. Alamin et al. [11], [12] report that 30% of posts
discuss customization. We find that 11.69% of LCA bugs are
fixed by modifying customizations.

4. Different and new findings. Some findings are relevant
but different. For instance, many programmers believe that
non-technical people can create LCAs with LCDPs [10]. As
shown in Table I, we confirm that several programmers can
implement large-scale LCAs, but repairing LCA bugs still re-
quires much programming experience since modifying source
files is essential in repairing 88.31% of LCA bugs (Finding 5).
Besides the different findings, we derive some new findings.
For instance, the prior studies [11], [12] build taxonomies for
LCSDs, but we build taxonomies for LCA bugs. As a new pro-
gramming paradigm, LCA bugs are different from those bugs
in deep learning libraries [16], machine learning systems [17],
and blockchain systems [18]. We complement these studies
with the taxonomies for a new type of application.

Researchers have conducted studies to analyze bugs in other
software systems. Section VI provides a brief survey on such
studies. Although we do not find unique LCA bugs, we find
that their distributions are different. For instance, Zhang et
al. [19] and Jia et al. [20] report that libraries do not have
GUI bugs. Akond and Farhana [21] report that 38.2% of bugs

are related to GUIs in covidl9 software projects. Zhenmin
et al. [22] report that 52.7% of bugs are related to GUIs in
Mozilla. As a comparison, we find that 78.2% of LCA bugs
are related to human-computer interactions.

III. METHODOLOGY

In this section, we introduce our analysis methodology.

A. Dataset

Table I shows our dataset. Column “Application” lists the
names of the LCAs. In particular, ***mbp and ***mcf are
water billing systems. ***mpb is a water debt system. ***mim
is a receipt management system. ***mom and ***orderes are
order systems. ***rmr is a meter reading system. ***sfndpr
is a water pricing system. ***odm is a document manage-
ment system. Column “LOC” denotes the lines of code for
each project. Sub-columns “Java”, “Script”’, “Markup”, and
“Format” denote the lines of code in Java, type languages,
markup languages, and data formats (e.g., json), respectively.
In total, the 8 projects have more than 500,000 lines of code,
and most code lines are implemented in script languages, e.g.,
JavaScript. Column “Prog” shows the number of programmers.
Due to the benefits of low-code development, most projects are
implemented by fewer than ten programmers. Column “Start”
denotes the time of submitting the first commit. As low-code
development is an emerging paradigm, most projects have
been developed since 2023. Column “Bug” shows the number
of our inspected bugs. As most projects are young, we do not
collect many bugs. In addition, it is expensive to analyze bugs
manually. Still, the size of the subjects is comparable with
the prior studies. For instance, Romano et al. [23] and Wu et
al. [24] analyze 146 and 347 compiler bugs, respectively.

From industrial partners, we collect eight LCAs from a
world-leading low-code software enterprise. These LCAs are
implemented for government digitalization and enterprise dig-
ital transformation, e.g., water fee pricing systems. Besides
developing LCAs, this enterprise implements its own LCPD
including the IDE, the runtime, and the frameworks. Most
frameworks and the IDE have already been released to a
well-known open-source community. However, our industrial
partner asks us not to release their company name. As a result,
we anonymize the enterprise and the project names. All the
projects are under active maintenance. Because our LCAs have
business value, we cannot release their source code within
a replicate package. Still, we are allowed to present code
snippets so that readers can understand our results.

B. General Protocol

Like other companies, our surveyed company uses a git
server to record revision histories. From this server, we extract
all commits of the subject LCAs. We then search commit
messages with keywords such as “bug” and “fault” for com-
mits whose messages explicitly mention bugs. Besides the git
server, the surveyed company has issue trackers to handle
bug reports. For each bug fix, we search issue trackers to
locate their bug reports. Most bug reports are obtained by

m Print Notice

Debt Unpaid SMS Sent Count

Collector Months Penalties

Cell Phone Arrears

Tester01

Fig. 4. A wrong display bug, where the cell phone is not displayed.

matching bug IDs that are mentioned in commit messages. If
a commit message does not mention a bug ID, we observe that
a commit message and its corresponding issue report often
share overlapping descriptions. Based on this observation,
we calculate the Jaccard similarity coefficient [25] between
commit messages and issue reports and select the best match.
To ensure that we locate the correct bug reports, we manually
read the modifications of commits and bug reports.

In RQs 1, 2, and 3, we explore the symptoms, causes,
and repairs of bugs. Three authors independently read the
commit messages and bug reports to build the taxonomy.
After the initial taxonomy is built, the other two authors
inspect their results. If there are any disagreements, we discuss
them at our group meeting and make the final decision. If
it is difficult to make the final decision, we consulted the
corresponding application developers to clarify ambiguous
cases. Besides the two sources, we analyze causes by reading
the buggy source files. After the causes are determined, we
read patches to understand the repairs. We adopted an open
coding strategy [26] to systematically derive categories from
the data. Through iterative coding and constant comparison,
we summarized recurring patterns and merged similar concepts
into higher-level categories. Based on the results of open
coding and subsequent discussions with our industry partners,
we built the taxonomy for each RQ. After we classified bugs,
we asked our industry partners to review our classification
results and revised them based on their feedback.

Researchers widely use Cohen’s Kappa [27] to measure the
inter-rater agreements. It produces a value that is between 0
and 1. In particular, a value closer to O indicates the least
agreement, and 1 indicates the most agreement. Our calculated
values were 0.97, 0.94, and 0.96 for symptoms, causes, and
repairs, respectively. According to the values, we achieve
almost perfect agreement on our built taxonomy.

IV. RESULT

This section presents our analysis results.

A. RQI. Symptom

1) Protocol: In this research question, we classify the
symptoms of LCA bugs. Although researchers [16], [17], [18]
have built various taxonomies for bug symptoms, no prior
study has built a taxonomy for LCA bugs. It is necessary to
build the taxonomy for LCA bugs since LCA is implemented
in a new programming paradigm as shown in Section II-A.
As a result, we have to build our taxonomy. In this paper, we
define the symptom of a bug as the unexpected behaviors that
can be observed when bugs occur. After discussing with our
partnering enterprise, we identify that most LCAs have GUIs

TABLE I

DATASET.
. . LOC
Application | Commit Tava | Seript | Markup | Format Prog Start Bug
***mbp 82 2,587 30,622 1,381 1,688 4 Aug/18/2023 12
#EEmpb 40 4,044 241,632 2,309 4,851 5 Apr/27/2023 13
#EEmef 60 15,513 16,127 4,652 1,450 4 Sep/18/2023 24
#EEmim 28 2,084 18,264 2,996 1,598 4 Sep/20/2023 13
FEEmom 17 8,074 8,019 1,703 1,307 3 Sep/20/2023 4
FEErmr 46 5,706 69,369 1,903 6,899 4 | May/29/2023 7
##kgfndpr 55 1,536 27,056 1,819 2,237 7 Apr/17/2023 10
***korderes 179 5,276 74,161 1,586 3,408 3 May/18/2023 6
%k odm 2,087 12,598 10,389 6,303 13,617 24 Jul/5/2021 159
[Toal | 2594 | 57418 | 495639 | 24652 | 37,055 | 58 | -~ 248]
and intensively interact with users. Based on this observation, M Print Notice
we classify the symptoms of LCA bugs into two categories:
y ymp g g (Dl pag Arrears| Penaltiss SMS Sent Count

human-computer interaction bugs and internal errors. For each
bug, we analyze its bug report and fixing commit and classify
them into one of the two categories. After that, we refine
the bugs in each category into subcategories. In particular,
we put each bug into an identified subcategory. If we cannot
find a suitable subcategory, we build a new subcategory. Our
taxonomy is incomplete, but it covers all analyzed bugs.

2) Results: We identify the following symptoms:

S1 Human-computer Interaction (194/248, 78.23%). In
this category, bugs occur in the interactions between users and
the software.

S1.1 Wrong Procedure (75/248, 30.24%). These bugs
cause wrong procedures that are unaligned with the design of
the software. For instance, the symptom in Figure 3 violates
the designed procedure, so we put it in this category.

S1.2 Wrong Display (53/248, 21.37%). These bugs display
data incorrectly. For instance, ***mpb is a water billing
system. Figure 4 illustrates a bug in the user interface for
requesting payments of water bills. In the table, each row
presents a household, and the columns list IDs, names, ad-
dresses, mobile numbers, and other details. Above this table,
users can send a billing message to the listed mobile number
by clicking the “Send message” button. However, due to this
bug, the first row fails to list the mobile number as highlighted
in the red box.

S1.3 Wrong User Interface (39/248, 15.73%). In these
bugs, programmers implement the wrong User interfaces. For
instance, Figure 5 shows another bug in the water billing
system, ***mpb. Above the table, users can send billing
messages to customers by clicking the “Send SMS” button
and print a notice by clicking the “Print Notice” button. If
customers have already paid their bills, users shall not send
any billing messages or print notices. In this case, both buttons
must be disabled. However, due to this bug, as shown in the
first row, when customers have already paid their bills, the two
buttons are still enabled. The red rectangles highlight the two
buttons. The total amount owed is zero, but the buttons are
enabled. As a result, we put the bug into this category.

S1.4 Error Message (21/248, 8.47%). These bugs cause
message boxes that display error details. For instance, ***mcf

Collector Months

Tester01 0.00 0.00 0

Tester01 2,924.23 0.00

Fig. 5. A wrong user interface bug, where the household in the red box has
no arrear but can be sent a payment reminder SMS.

is a project for the water payment system. Figure 6 shows
a bug. The GUI has three sections. The top section shows
the details of the families, the middle section lists detailed
information on arrears, and the bottom section lists payment
details. Users can check the family information, choose a debt,
and select the corresponding payment method. After that, the
user can fill in the box labeled “Actual Received” with the
actual received amount and press the “Pay” button to complete
the payment. Due to this bug, a message box displays an error
message when a user attempts to press the “Pay” button with
an empty amount. Instead, the program should prompt a box
and let users fill in the field. As a result, we put it in this
category.

S1.5 Others (6/248, 2.42%). This category includes other
types of human-computer interaction bugs. For instance, in
***odm, after users edit old documents in a certain format,
they fail to print them. Printing bugs belong to special cases
in the interaction between computers and users.

The above observations lead to a finding:

Finding 1. Most LCA bugs (78.23%) are related to
human-computer interactions.

GUI testing can be useful for detecting bugs in their human-
computer interactions.

S2 Internal Error (54/248, 21.77%). In this category
of bugs, programs produce internal errors. In most cases,
programmers actively detect and repair these bugs.

S2.1 Functionality (29/248, 11.69%). In these bugs, pro-
grammers implement incorrect functionalities. For example,
in ***odm, a programmer complains that messages cannot be
sent if they are longer than 256 characters. As programmers

Error Message

@ Occurrence: 2024-05-29 16:52:56

)

: Total | Water Sewage Garbage

§ 10210 p 2 32000 Charges 000 Fee 000 foe =~ ¢
Actual

sh Received Enter a number

Fig. 6. An error message of a bug.

can bypass the bug, users may not notice its symptoms, but
the internal functions do not work as expected.

S2.2 Wrong Data (13/248, 5.24%). If a bug causes the
software to produce incorrect output data, we determine it
as a wrong data bug. For example, ***mbp is a project that
manages billing archives. When it imports a list of households,
it provides non-sequential user IDs. As a result, some user IDs
do not have corresponding households. Although users may
not notice that their IDs are non-sequential, this bug wastes
IDs, and we classify it as a wrong data bug.

S2.3 Others (12/248, 4.84%). This category encompasses
various types of internal error bugs. For example, the LCA re-
quires compiling the original design into a low-level language.
In a specific version of ***odm, the project would encounter a
bug during the compilation process and fail to compile. LCDPs
use compilers to generate machine code, and their compilers
can still have bugs. Before such bugs are fixed, LCAs must
bypass the internal errors caused by compiler bugs.

The above observations lead to a finding:

Finding 2. Most internal LCA errors are about func-
tionalities (11.69%) and wrong data (5.24%).

Compared with crashes, it is more challenging to detect
bugs about functionalities and wrong data, since it is difficult
to obtain their test oracles.

In summary, most LCA bugs are GUI-related bugs. GUI
testing can have some opportunities to detect LCA bugs. Most
internal LCA bugs are about functionalities and wrong data.
Different from crashes, there is no natural test oracle to detect
such bugs. The research on test oracles can be critical in
detecting LCA bugs.

B. RQ2. Cause

1) Protocol: This research aims to classify the causes of
LCA bugs. Researchers [28], [29] have established taxonomies
of causes when they analyze other types of software projects.
Although they use the same term, researchers have different
definitions for causes. Most researchers [30], [20] analyze bug
causes from the perspective of source code. In our study, we

analyze causes from the perspective of programmers. The low-
code development paradigm is unfamiliar to programmers.
Programmers introduce bugs because they do not have suf-
ficient knowledge. From this angle, we identify two primary
causes for LCA bugs after discussing with our partnering
company. One category is the lack of project-specific knowl-
edge, and the other category is the lack of domain-specific
knowledge. After that, we further classify each category into
specific subcategories.

2) Result: We classify causes into two categories.

C1 Project-specific Knowledge (175/248, 70.56%). Pro-
grammers introduce these bugs since they are unfamiliar with
the knowledge specific to a project.

C1.1 Incorrect Logic (94/248, 37.90%). These bugs occur
when programmers implement the wrong algorithms and log-
ics. For instance, in ***odm, a bug report complains that a
table of administrative organizations is unordered. This table
is defined in the DepartmentGroupMobile.hpl:

“Content” : {
“code” : “DepartmentGroupMobile”,
”sorts” : null, ..

}

T S

}

The above file defines business objects or application func-
tionalities. Programmers can fill in the sorts field to select a
sort method. This table is unsorted since programmers leave
sorts as null. As the logic is wrong, we put this bug in the
incorrect logic category.

C1.2 Data Retrieval (34/248, 13.71%). LCAs have many
filters to retrieve data from databases. These bugs arise when
programmers wrongly retrieve data from databases. For in-
stance, in ***mpb, the QueryDataVOAction class declares
the getBglCondition () method. This method builds a query
string, bglCondition, to retrieve delinquent householders
from a dataset. The patch for this bug is as follows:

private String getBqlCondition () {

1
2| String bglCondition ="";

3 EntityFilter filter = getQueryContext(). getFilter () ;

4| if (filter ==null || filter . getFilterConditions () == null)

5 return ”;

6| for (int i =0; i < filter . getFilterConditions ().size (); i++) {...

7 bqlCondition = bqlCondition + ” and record .BusinessArea = *” +
8 filter . getFilterConditions ().get(i).getValue() + ™ ”

9

o+ //Number of Overdue Periods

1

+ bqlCondition = bglCondition + ” and case when recordCopy.times is
null then O else recordCopy.times end <> 07;

12

13 return

14}

bqlCondition ;

In the above code, Lines 2 to 9 build a query string, and
Line 13 returns the built string. LCA uses this string to retrieve
delinquent householders, but it retrieves non-delinquent ones
due to this bug. To repair this bug, Line 11 adds a comparison
with the core delinquency status field, recordCopy.times.
Here, this field records the number of delinquent bills for each
householder. Line 11 adds a condition and it selects data whose
delinquent bills are more than one. As programmers forget to
add the comparison, the buggy code retrieves all householders

EEH Edit View Cancel Submit Cancel Submission

Collapse ~

Fig. 7. A wrong user interface bug. The programmer misunderstood the
requirement and did not disable the “Add” button in the red box.

including non-delinquent records. As this bug is caused by the
retrieval of wrong data, we put this bug into this category and
do not classify it to the incorrect logic category.

C1.3 GUI Design (32/248, 12.90%). These bugs are intro-
duced because programmers fail to understand the correct Ul
designs. For instance, Figure 7 illustrates a bug in the water
price system. In this bug, programmers fail to design when the
buttons should be enabled. In particular, the system creates
a new pricing policy after a user clicks the “Add” button.
If the system works as designed, when a policy is created,
users should not create another policy. As a result, during the
process, the “Add” button should be disabled. However, as
highlighted by the red rectangle in Figure 7, this button is
enabled during policy creation. As a result, we determine that
the GUI design is incorrect.

C1.4 Automata (11/248, 4.44%). When interacting with
users, programmers often implement automata with various
states. They can introduce bugs if the states are wrong. For
instance, the bug in Figure 3 is caused by an unauthorized
state transition, and we put it in the automata category.

C1.5 Others (4/248, 1.61%). This category includes other
types of project-specific knowledge bugs, including incorrect
time formats. For instance, in project ***mom, the program-
mer encounters a problem where the time filter does not work
properly. The bug stems from the time filter not functioning
correctly in the project. Specifically, in the OrderManage. frm
file, the time filter was set with the following configuration:

” controltype” : “date”,
“format” : "yyyy-MM-dd”

S

In the above code snippet, the filter only worked at a daily
precision level, ignoring hours, minutes, and seconds. Con-
sequently, the filter is unable to handle time-based precision
beyond daily granularity. The time format setting belongs to
special cases of project-specific knowledge.

The above observations lead to a finding:

Finding 3. 70.56% of LCA bugs are introduced due
to the lack of project-specific knowledge.

C2 Domain Knowledge (73/248, 29.44%). Programmers
introduce these bugs since they have insufficient or incorrect
domain knowledge of implementing low-code programs.

C2.1 ID Mismatch (40/248, 16.13%). To reduce the effort
of manipulating data and calling across languages, low-code
projects define many IDs to denote identifiers such as variable
names, database columns, APIs, and web services. IDs are
typically defined in the format of string values. For instance,

Figure 4 shows a bug that fails to display mobile numbers. In
the DebtRecord.be. resource resource file, the details of a
user are associated with the following ID:

1 {

2 7id” : ”sxx.DebtRecord.DebtRecord.UserCode.UserCode_code.Name”,

3 “value” : "UserCode”,

4 “comment” : ”In the business entity ’ArrearsRecord’, the ’UserCode’
attribute in the ’ArrearsRecord’ entity is associated with and
brings out the name of the *UserCode’.”

5|y

As IDs are string values, if programmers call wrong or
even non-existent IDs, compilers will not report the problems.
When programs call the wrong IDs, they will fail at runtime.
In this example, when querying the mobile number of a user,
the DebtRecordList_ frm extendConstruct.ts file calls
a wrong ID:

Screen() { ..
var filter = ’{” FilterField ”: “UserCode.UserCode_CODE”, Value™:” +
code + 7, "Lbracket”: null,”Rbracket”: null, ”Relation™: 0, ”
Expresstype™: 0,”Compare™ 0 };

)

return this . listDataService . filter (filter ,

»~

sort) ;

5|y

As IDs are case-sensitive, the above snippet retrieves an
empty value and causes the bug.

C2.2 Corner Case (23/248, 9.27%). These bugs are caused
by handling special cases, such as zero or null values, that the
software does not properly anticipate. For example, in project
***mcf, a table should display a zero if a household has no
previous meters, but this table fails to display anything. The
buggy code is as follows:

1| List <IEntityData> entityDataList = Icp.query(entityFilter);
2 | engineRootData. setValue (”StartNum”, (BigDecimal) entityDataList . get (0) .
getValue ("startNum”)) ;

Line 2 sets the value of this table. When a household has no
previous meters, entityDatalList is null, and calling the
get (0) method throws an exception. As a result, the table
fails to display this value. In this bug, programmers fail to
handle the corner case, null.

C2.3 Other (10/248, 4.03%). This category includes other
types of domain knowledge bugs like exception handling.
For instance, in ***odm, WFCompnentImp.java has the
following code:

1| public void writeDocOpinion (...) {

2| IBefSessionManager befSessionManager = SpringBeanUtils.getBean (...) ;...
3| befSessionManager. createSession () ;...

4| try {..

5 if (”Proofreader”. equals (type)) {

6 writeCheckPerson(wfContext, type);

7 return;

8

} catch (Exception e) {...

10| } finally {

11 if (! StringUtils .isEmpty(befSessionManager. getCurrentSessionld ())) {
12 befSessionManager. closeCurrentSession () ;

13 }

| 3}

15|}

©

In the above code, Line 3 creates a session, and Line 12
closes this session. However, if a person is a proofreader, Line
7 bypasses Line 14, and the session is not closed.

The above observations lead to a finding:

Finding 4. 29.44% of LCA bugs are introduced due
to the lack of domain-specific knowledge.

As domain-specific knowledge is valid across projects, it
is feasible to implement tools to detect bugs for detecting ID
mismatches and corner cases for all LCA.

In summary, 78.23% of LCA bugs are related to project-
specific knowledge. Learning-based tools are suitable for de-
tecting these bugs since they can learn project-specific knowl-
edge. 29.43% of LCA bugs are related to domain-specific
knowledge. Rule-based tools can be useful for detecting these
bugs since their rules hold across projects.

C. RQ3. Repair

1) Protocol: This research question explores the modifi-
cations to repair LCA bugs. For each bug, we analyze the
modifications of its bug-fixing commit. The modifications can
be applied on source code, configurations, and other software
artifacts. By analyzing commit histories and modification
details, we categorize repairs and provide illustrative examples
to demonstrate the details.

2) Result: We identify two categories of repairs.

R1 Modification to Code (219/248, 88.31%). This type of
repair mainly modifies source files to fix bugs.

R1.1 Adjusting Functionality (115/248, 46.37%). Pro-
grammers modify code functionalities to fix bugs. For instance,
in the ***odm project, a bug report complains that a table
is unordered. Programmers introduce this bug because they
forget to define the sorting criteria of this table. To fix this,
programmers modify the functionality:

1
2 “Content” : {

3 “code” : “DepartmentGroupMobile”,
4|+ Usorts” 1 [{

5|+ “sortType” : 0,

6|+ ” sortField ” : "PRIORITY”
7|+ YL}

5|}

Lines 4 to 7 of the above code add a sorting method and
rank the table by priority. To fix this bug, these code lines
implement new functionality for this table.

R1.2 Aligning ID (40/248, 16.13%). If IDs are mismatched,
programmers can align mismatched IDs. In Figure 4, a table
fails to list mobile phone numbers due to mismatched IDs. To
fix this bug, programmers made the following modification:

— filter +={” FilterField ”: “UserCode.UserCode_CODE”, "Value™:...} ;
+ filter +={” FilterField ”: “UserCode.UserCode_code”, "Value™:...} *;

)

The programmer corrects the ID of the key used for the
field filter to locate the corresponding data. As a result, we
classify this as an aligning ID method.

R1.3 Changing Data Process (33/248, 13.30%). In this
category, the bugs are caused by incorrect data processing
methods, and the fix involves modifying the filter or calcula-
tion logic. For example, in the project ***mcf, a programmer

encountered an internal bug where the total fee amount was
incorrect. This bug arises because the data processing logic
wrongly included other expenses in the total fee calculation. To
fix the bug, the programmer made the following modification:

BigDecimal otherExpenses = this.sumAmount(otherExpenses);
BigDecimal feeSums = this.sumAmount(feeSums);
— feeSums = feeSums.add(otherExpenses);

S

w

The original code mistakenly excluded otherExpenses from
the calculation of feeSums. In the snippet, two variables,
otherExpenses and feeSums, are used to store the sum of
other expenses and the sum of fees, respectively. The prob-
lematic line, denoted by the subtraction symbol (-), adds the
otherExpenses to feeSums, which was incorrect according
to the intended logic. The programmer removed this addition
to correctly separate the two amounts, ensuring the total fee
calculation does not erroneously include other expenses.

R1.4 Adjusting Automata (11/248, 4.44%). An automaton
defines states, events, and transitions for complex behaviors.
According to the current state of automata, programs can
produce outputs for specific inputs. When bugs occur in this
process, programmers can modify automata. For instance, to
fix the bug in Figure 3, programmers modified the logic
of state transitions, and we categorize this modification to
adjusting the automata.

R1.5 Others (20/248, 8.06 %) This category includes other
types of modification to code. For instance, in project ***min,
DownloadPDFVOAction. java, the programmer exchanges
the method to throw an exception when failing to download
the PDF of the receipt.

catch (Exception e) {
— throw new RuntimeException(e);
+ throw new CommonException(”sxxmin”, "DownloadError”, "Download
Error!” + e.getMessage()+e.getStackTrace(), null, ExceptionLevel.Info);
4| }

W

The above observations lead to a finding:

Finding 5. Modifications on source files are essential
in repairing 88.31% of LCA bugs.

R2 Modification to Customization (29/248, 11.69 %). This
type of repair modifies customizations to fix bugs. This repair
method is closely related to the modification of UI settings. Ul
setting refers to the configuration and customization of the user
interface, including adjusting the layout, design, components,
and behavior. In LCA development, UI settings are a popular
tool for ease of customization and application design without
the need for extensive programming skills. This accessibility
allows for faster development, as users can visually configure
elements and see changes in real time.

R2.1 Changing Enable Conditions (20/248, 8.06%). Pro-
grammers can modify the conditions to enable or disable
GUI elements when repairing bugs. For instance, as shown
in Figure 7, after clicking the “Add” button to create a policy,
this button should be disabled until the current policy is
approved, but this “Add” button is never disabled. To fix this

bug, programmers modified the settings of this button, and the
modification caused the following code modification:

1| “canAdd™: {

2 ”condition” : [

3 {”IBracket™: ™, “source”: ”state”, “compare”: “===", ”target ": 7’

init *”, 7 relation ”: ™, “rBracket”: '}

4| = J{”1Bracket”: 7, “source”: “getData(’{ DATA™/root—component/
billstate / billState }’)”, “compare™ "===", ”target”: ”’ Billing ", ~
relation ”: “or”, “rBracket”: "}

5 L. }

In the above setting, the canAdd condition determines
whether the “Add” button is enabled. In the buggy code, Line
3 checks whether a new policy is created, i.e., whether state
is init. Line 4 checks whether the state of the created policy
is Billing. As the button is enabled when either condition
is satisfied, the button is enabled when the policy is created.
In the fixed code, programmers delete Line 4 and remove the
unnecessary condition.

R2.2 Changing GUI Setting (9/248, 3.63%). As LCPS
provides many GUI settings, programmers can modify the
settings to repair bugs. For instance, in project ***odm, a bug
report complains that the fields in a list do not wrap if the fields
have long names. To fix this bug, programmers modify the
settings of the list and cause the following code modification:

7 fields 7:[{
“caption” : “current participant ” ,...

1

2
3|+ “allowGrouping” : true
4

The above patch adds the allowGrouping to enable the
wrapping of fields. The above observations lead to a finding:

Finding 6. Changing enable conditions and GUI set-
tings fix 8.06% and 3.62% of LCA bugs, respectively.

In summary, even in LCAs, repairing bugs mainly requires
modifications to the source code. Only 11.69% of LCA bugs
are fixed by customization modifications.

D. RQA4. Association

1) Protocol: In this RQ, we aim to explore the associations
between symptoms, causes, and repair methods. Based on
the results of previous RQs, we build a graph to denote the
associations. To measure the strength of these associations,
we apply the lift metric [31], which quantifies the relationship
between two categories as follows:

P(ANB)
P(A) x P(B)

In this equation, P(A), P(B), and P(ANB) correspond to the
probabilities that a bug falls under category A, category B, and
both categories A and B, respectively. A [ift value measures
how strongly two categories are associated, but a higher lift
value does not necessarily imply a larger proportion of bugs.
Typically, a lift value greater than one indicates that there is a
meaningful association between A and B. However, to increase
the robustness of the associations we identify, we define a
stronger threshold: An association is only considered valid if

lifi(A, B) = (1)

the lift value exceeds 1.5 and the intersection between A and
B involves at least five bug cases. In this context, we focus
specifically on analyzing the symptom-to-cause and cause-to-
repair associations.

2) Result: In Figure 8, each column denotes a category of
symptoms, causes, and repairs. In each column, a thin bar
denotes the percentage of this category. The edges between
the two columns indicate their association. The thickness of
an edge is proportional to the strength of the association,
measured by the [ift value. As defined in Equation 1, thicker
edges denote higher /ift values and stronger associations. For
instance, as shown in Figure 8, P(C'1.3) is 13.70%; P(R2.1)
is 8.06%; and P(C1.3N R2.1) is 2.82%. We calculate the lift
value between C1.3 and R2.1 as #3?06% = 2.55. As the
lift value is more than 1.5, we consider that there is a strong
association between C1.2 (GUI designs) and R2.1 (changing
GUI settings).

Figure 8 shows that the associations between symptoms and
causes are weak. The links between symptoms and causes are
fewer than those between causes and repairs, and the links
are lighter. The result indicates that the same symptoms can
be triggered by the lack of both project-specific knowledge
and domain-specific knowledge. As an extreme case, wrong
process bugs are caused by mismatches (10), data retrieval (7),
corner cases (5), and logical errors (31). This demonstrates that
bugs in interaction flow could stem from multiple underlying
causes, requiring a holistic approach to diagnose and fix them
effectively. These weak associations between symptoms and
causes bring challenges to the diagnosis of LCA bugs. As
a comparison, the association between causes and repairs
tends to be stronger since there are more links, and links are
thicker. For instance, adjusting automata repairs most incorrect
automata. The above observations lead to a finding:

Finding 7. In LCAs, the same symptoms are caused
by multiple reasons, but when the reasons are found,
most repairs are strongly associated with causes.

E. Threats to Validity

The internal validity includes manual errors in our study.
This threat could further affect the links between symptoms
and causes. To reduce the threat, we carefully discussed
and refined the categories, and asked industrial professional
programmers to check our results. The second threat is related
to the completeness of our taxonomy. Like other studies, our
built taxonomy is based on observations. This threat could be
mitigated if researchers collect more data from other sources.

The external validity includes our selected subjects. We are
the first to analyze LCA bugs. As it is difficult to collect LCAs
for analysis, our subjects lack diversity. They are developed
by an LCDP and collected from the same company. The
results could be different if follow-up researchers analyze
more LCAs from other sources, e.g., mobile LCAs. This threat
could be further reduced if researchers can collect and analyze
open-source LCAs in the future. Another external threat is

Symptom

Cause

Repair

S1. Human-computer Interaction (78.23%)

C1. Project-specific knowledge (70.56%)

R1. Modification on Code (88.31%)

S1.1 Wrong Procedure (30.24%)

C1.1 Incorrect Logic (37.90%)

R1.1 Adjusting Functionality (46.37%)

S1.2 Wrong Display (21.37%)

C1.2 GUI Design (12.90%)

R1.2 Aligning ID (16.13%)

S1.3 Wrong User Interface (15.73%)

C1.3 Data Retrieval (13.70%)

R1.3 Changing Data Process (13.30%)

N\
N\

S1.4 Error Message (8.47%)

Cl.4Automata (4.44%)

R1.4 Adjusting Automata (4.44%)

S1.5 Others (2.42%)

C1.5 Others (1.61%)

R1.5 Others (8.06%)

S2. Internal Error (21.77%)

C2. Domain Knowledge (29.44%)

R2. Modification on Customization (11.69%)

S2.1 Functionality (11.69%)

C2.1 ID Mismatch (16.13%)

R2.1 Changing Enable Conditions (8.06%)

S2.2 Wrong Data (5.24%)

C2.2 Corner Case (9.27%)

R2.2 Changing GUI Setting (3.63%)

$2.3 Others (4.84%)

C2.3 Others (4.03%)

Fig. 8. The distributions and associations of symptoms, causes, and repairs.

that all analyzed bugs originate from a single company. This
threat could be reduced if other researchers collect low-code
application bugs from more companies.

Although our inspected bugs are comparable to prior stud-
ies [23], [24], we have inspected a limited number of bugs.
This threat is shared by all empirical studies if their analysis is
manual. Due to the huge effort of manual analysis, researchers
can analyze only limited subjects manually. As another shared
external validity, all empirical studies are a bite of time. With
the evolution of LCAs and LCDPs, future data can illustrate
other characteristics. As low-code development is a recent
trend, although we tried to find the LCAs with the longest
maintenance histories, most of the subjects have started since
2023. It can be interesting to replicate our study when LCAs
accumulate more bugs.

V. INTERPRETATION OF OUR FINDINGS

In this section, we interpret our findings:

Integrating LCDPs with advanced techniques like GUI
testing. Although we do not analyze LCDP bugs, our study
provides feedback from LCDP users, and our findings are
useful for improving LCDPs. For instance, as most LCA
symptoms are related to human-computer interactions (Find-
ing 1), LCDPs can integrate more GUI testing tools. Further-
more, as we report the associations among symptoms, causes,
and repairs (Finding 7), LCDP can offer better support for
diagnosing bugs.

Identifying test oracles for LCA bugs. Finding 2 shows
that most LCA bugs are not crashes. Finding 3 shows that
most bugs are specific to projects. To detect these bugs,
researchers can learn test oracles if they mine project-specific
rules. These tools are specific to projects since they require
project-specific knowledge. Meanwhile, Finding 4 shows that
29.449% of LCA bugs are introduced due to the lack of domain-
specific knowledge. If domain-specific knowledge is encoded,
tools can detect bugs that are general and appear in multiple
LCAs. Researchers need to identify more complicated test
oracles when detecting LCA bugs.

Programming expertise for implementing LCAs. Many
practitioners and researchers believe that low-code develop-
ment allows non-technical people to create LCAs. Our findings

are mixed. On one hand, as shown in Table I, with the support
of LCPDs, only several programmers can write large LCAs in
a short period of time. On the other hand, repairing most LCA
bugs still requires code modifications (Finding 5). It still needs
much programming expertise to identify and repair LCA bugs.
Therefore, while low-code development lowers the barrier to
software creation and allows broader participation from non-
technical people, professional programmers remain essential,
especially when diagnosing and repairing bugs.

VI. RELATED WORKS

Empirical studies on low-code development platforms.
Researchers have conducted some empirical studies to under-
stand these platforms. Sahay et al. [8] compare the features
and functionalities of eight LCDPs. Bock and Frank et al. [9]
conducted an exploratory study on seven different LCDPs,
aiming to identify the essence of low-code development.
Besides the characteristics of LCDPs, some studies explore
the programmers’ perspective. Alsaadi et al. [32] conducted
a survey study to understand the factors for the utilization of
LCDPs. Luo et al. [10] conducted a study on the challenges
of low-code development. Al Alamin et al. [11] analyze how
programmers migrate to LCDPs. Al Alamin et al. [12] analyze
how programmers discuss the adoption and barriers of LCDPs.
Other studies like Liu et al. [33] analyze the bugs of LCDPs.
Although they support the development of LCAs, LCDPs
themselves are not LCAs. We are the first to analyze the
characteristics of bugs in LCA.

Empirical studies on bugs in specific software systems.
Researchers have conducted empirical studies to analyze bugs
in specific software. Thung et al. [17] analyze bugs in machine
learning systems. Sun ef al. [34] analyze bugs in machine
learning programs. Besides machine learning programs, Zhang
et al. [19] and Jia et al. [20] analyze bugs in Tensorflow. Sun et
al. [34] analyze bugs in more deep-learning libraries. Tambon
et al. [35] analyze silent bugs in Keras and TensorFlow. Zhang
et al. [36] analyze job failures in deep learning. Besides
machine learning bugs, researchers [37], [23], [38], [39],
[40] have conducted various empirical studies to understand
compiler bugs. These studies have derived interesting findings
about the buggy locations [38], repair patterns [38], [37], [40],

and causes [38], [39] of compiler bugs. Besides the above-
mentioned bugs, researchers analyze bugs in other types of
software e.g., printed circuit board bugs [41] and webassembly
runtime bugs [42]. We are the first to analyze bugs in LCA,
complementing the prior studies.

End user programming. End user programming refers to
a set of methods, techniques, and tools that enable nonpro-
fessional software developers to create, modify, and extend a
software artifact [43], [44]. End user programming is a hot
research topic, and the related work can be traced back to
the 1990s [45], [46]. Lieberman et al. [47] classify different
types of techniques for supporting end user programming.
Kelleher et al. [48] present a taxonomy of languages and
environments of end user programming. Researchers have
analyzed various perspectives of end user programming, in-
cluding daily activities [49], science data processing [50], and
MATLAB script programming [51]. As a recent trend, end
user programming has been introduced to the Al domain,
like AI model development [52], interaction design [53], and
education and teaching [54]. As low-code programming is a
type of end user programming, the findings in our study are
useful for understanding bugs in end user programming.

VII. CONCLUSION AND FUTURE WORK

Low-code development has attracted much attention from
academics and industries since this new programming
paradigm lowers the bar of programming. To understand
this emerging paradigm, researchers have conducted various
studies on LCPD bugs and how programmers perceive low-
code development. However, as LCAs have business values,
few LCAs are open source. As a result, to the best of
our knowledge, no study has explored LCA bugs. From our
industrial partner, we collected more than two hundred LCA
bugs and conducted the first empirical study on commercial
LCA bugs. Our study covers the symptoms, causes, and repairs
of LCAs and derives seven findings.

In future work, our study can be extended in the following
perspectives. First, it is worth exploring which components of
LCPDs are particularly vulnerable to introducing LCA bugs.
Second, the correlations between LCA bugs and LCPD bugs
are worth further investigation. Finally, it is worth exploring
how to effectively detect and repair LCA bugs.

ACKNOWLEDGMENT

We appreciate reviewers for their insightful comments.
This work is sponsored by National Key R&D Program of
China No. 2023YFB4503804 and National Natural Science
Foundation of China No. 62272295.

REFERENCES

[1] R. Waszkowski, “Low-code platform for automating business processes
in manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 376-381,
2019.

[2] K. S. Koong, L. C. Liu, and X. Liu, “A study of the demand for
information technology professionals in selected internet job portals,”
Journal of Information Systems Education, vol. 13, no. 1, pp. 21-28,
2002.

[3] J. F. Pane and B. A. Myers, “More natural programming languages and
environments,” in End user development, 2006, pp. 31-50.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Richardson, J. R. Rymer, C. Mines, A. Cullen, and D. Whittaker,
“New development platforms emerge for customer-facing applications,”
Forrester: Cambridge, MA, USA, vol. 15, 2014.

J. R. Rymer, R. Koplowitz, S. Leaders, K. Mendix, S. Leaders, G. Ser-
viceNow, S. Performers, W. MatsSoft, and T. Contenders, “The forrester
wave™: low-code development platforms for ad&d professionals,” Em
The, vol. 13, 2019.

J. Wong, M. Driver, and P. Vincent, “Low-code development
technologies evaluation guide,” Gartner. Verfiigbar unter: https://www.
gartner. com/en/documents/390233 1/low-code-development-
technologies-evaluation-guide (Zugriff am: 15.10. 2020), 2019.
Mendix, “A survey of the low-code market,” 2025. [Online]. Available:
https://www.mendix.com/blog/low-code-market/

A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the understanding and comparison of low-code development platforms,”
in Proc. SEAA, 2020, pp. 171-178.

A. C. Bock and U. Frank, “In search of the essence of low-code: an
exploratory study of seven development platforms,” in Proc. MODELS-
C, 2021, pp. 57-66.

Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and
challenges of low-code development: the practitioners’ perspective,” in
Proc. ESEM, 2021, pp. 1-11.

M. A. Al Alamin, S. Malakar, G. Uddin, S. Afroz, T. B. Haider, and
A. Igbal, “An empirical study of developer discussions on low-code
software development challenges,” in Proc. MSR, 2021, pp. 46-57.

M. A. A. Alamin, G. Uddin, S. Malakar, S. Afroz, T. Haider, and
A. Igbal, “Developer discussion topics on the adoption and barriers of
low code software development platforms,” Empirical software engi-
neering, vol. 28, no. 1, p. 4, 2023.

“Exploring low-code development: A comprehensive literature review,”
Oct. 2023. [Online]. Available: https://csimq-journals.rtu.lv/csimg/
article/view/csimq.2023-36.04

“Appsmith: Deliver custom ai-powered apps and agents faster,” https:
/I'www.appsmith.com/, 2024.

“Lesson 3 - now code it,” https://docs.appsmith.com/getting-started/
tutorials/the-basics/write-js-code, 2024.

L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,
causes, and repairs of bugs inside a deep learning library,” Journal of
Systems and Software, vol. 177, p. 110935, 2021.

F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs
in machine learning systems,” in Proc. 23rd ISSRE, 2012, pp. 271-280.
Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in Proc. MSR, 2017, pp. 413—
424.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proc. 27th SIGSOFT, 2018, pp.
129-140.

L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical study
on bugs inside tensorflow,” in Proc. 25th DASFAA, 2020, pp. 604-620.
A. Rahman and E. Farhana, “An exploratory characterization of bugs in
covid-19 software projects,” 05 2020.

Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now?: An empirical study of bug characteristics in modern
open source software,” 10 2006, pp. 25-33.

A. Romano, X. Liu, Y. Kwon, and W. Wang, “An empirical study of
bugs in webassembly compilers,” in Proc. ASE, 2021, pp. 42-54.

X. Wu, J. Yang, L. Ma, Y. Xue, and J. Zhao, “On the usage and
development of deep learning compilers: an empirical study on tvm,”
Empirical Software Engineering, vol. 27, no. 7, p. 172, 2022.

S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,
“Using of jaccard coefficient for keywords similarity,” in Proceedings of
the international multiconference of engineers and computer scientists,
vol. 1, no. 6, 2013, pp. 380-384.

J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.
J. Kohen, “A coefficient of agreement for nominal scale,” Educ Psychol
Meas, vol. 20, pp. 37-46, 1960.

Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi, “Analyzing bug fix
for automatic bug cause classification,” Journal of Systems and Software,
vol. 163, p. 110538, 2020.

G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs are
the same: Understanding, characterizing, and classifying the root cause
of bugs,” arXiv preprint arXiv:1907.11031, 2019.

https://www.mendix.com/blog/low-code-market/
https://csimq-journals.rtu.lv/csimq/article/view/csimq.2023-36.04
https://csimq-journals.rtu.lv/csimq/article/view/csimq.2023-36.04
https://www.appsmith.com/
https://www.appsmith.com/
https://docs.appsmith.com/getting-started/tutorials/the-basics/write-js-code
https://docs.appsmith.com/getting-started/tutorials/the-basics/write-js-code

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory study of
autopilot software bugs in unmanned aerial vehicles,” ser. ESEC/FSE
2021. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3468264.3468559

J. Han, M. Kamber, and J. Pei, “Data mining: Concepts and techniques,”
2011.

H. A. Alsaadi, D. T. RADAIN, M. M. Alzahrani, W. F. Alshammari,
D. Alahmdi, and B. Fakieh, “Factors that affect the utilization of low-
code development platforms: survey study.” Romanian Journal of Infor-
mation Technology & Automatic Control/Revista Romadnd de Informaticd
si Automaticd, vol. 31, no. 3, 2021.

D. Liu, H. Jiang, S. Guo, Y. Chen, and L. Qiao, “What’s wrong
with low-code development platforms? an empirical study of low-code
development platform bugs,” IEEE Transactions on Reliability, 2023.
X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in Proc. 24th APSEC,
2017, pp. 348-357.

F. Tambon, A. Nikanjam, L. An, F. Khomh, and G. Antoniol, “Silent
bugs in deep learning frameworks: an empirical study of keras and
tensorflow,” Empirical Software Engineering, vol. 29, no. 1, p. 10, 2024.
R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in Proc.
ICSE, 2020, pp. 1159-1170.

Z. Zhou, Z. Ren, G. Gao, and H. Jiang, “An empirical study of
optimization bugs in gcc and llvm,” Journal of Systems and Software,
vol. 174, p. 110884, 2021.

Z. Wang, D. Bu, A. Sun, S. Gou, Y. Wang, and L. Chen, “An empirical
study on bugs in python interpreters,” IEEE Transactions on Reliability,
vol. 71, no. 2, pp. 716-734, 2022.

Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen,
“A comprehensive study of deep learning compiler bugs,” in Proc.
ESEC/FSE, 2021, pp. 968-980.

C. Zhang, B. Chen, L. Chen, X. Peng, and W. Zhao, “A large-scale
empirical study of compiler errors in continuous integration,” in Proc.
ESEC/FSE, 2019, p. 176-187.

X. Zhao, H. Jiang, S. Guo, D. Liu, H. Liu, C. Shi, and X. Li, “A compre-
hensive study of open-source printed circuit board (pcb) design software
bugs,” IEEE Transactions on Instrumentation and Measurement, 2024.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Y. Wang, Z. Zhou, Z. Ren, D. Liu, and H. Jiang, “A comprehensive
study of webassembly runtime bugs,” in Proc. SANER 2023, 2023, pp.
355-366.

M. M. Burnett. and C. Scaffidi, The Encyclopedia of Human-Computer
Interaction, 2nd Ed. The Interaction Design Foundation, 2013.

A.]J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in
end-user software engineering,” ACM Comput. Surv., 2011.

B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

M.-F. Costabile, D. Fogli, C. Letondal, P. Mussio, and A. Piccinno,
“Domain-Expert Users and their Needs of Software Development,”
in Proc. HCI 2003, 2003. [Online]. Available: https://hal.science/
hal-01299738

H. Lieberman, F. Paterno, M. Klann, and V. Wulf, End-User Develop-
ment: An Emerging Paradigm. Springer Netherlands, 2006.

C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” CSUR, vol. 37, no. 2, pp. 83-137, 2005.

C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers of end
users and end user programmers,” in Proc. VL/HCC 2005). IEEE, 2005,
pp. 207-214.

G. Fischer, K. Nakakoji, and Y. Ye, “Metadesign: Guidelines for
supporting domain experts in software development,” IEEE software,
vol. 26, no. 5, pp. 37-44, 2009.

N. Gulley, “Improving the quality of contributed software and the matlab
file exchange,” in Proc. 2nd WEUSE, 2006, pp. 8-9.

K. Kahn, R. Megasari, E. Piantari, and E. Junaeti, “Ai programming by
children using snap! block programming in a developing country,” in
Proc. EC-TEL, vol. 11082, 2018.

A. Bunt, C. Conati, and J. McGrenere, “Mixed-initiative interface
personalization as a case study in usable ai,” Al Magazine, vol. 30,
no. 4, pp. 58-58, 2009.

F. Paterno, “teaching end-user development in the time of iot and ai,”
in Proc. IFIP. Springer, 2021, pp. 257-269.

https://doi.org/10.1145/3468264.3468559
https://hal.science/hal-01299738
https://hal.science/hal-01299738

	Introduction
	Motivating Example
	LCDP
	LCA Bug
	Comparison

	Methodology
	Dataset
	General Protocol

	Result
	RQ1. Symptom
	Protocol
	Results

	RQ2. Cause
	Protocol
	Result

	RQ3. Repair
	Protocol
	Result

	RQ4. Association
	Protocol
	Result

	 Threats to Validity

	Interpretation of Our Findings
	Related Works
	Conclusion and Future Work
	References

