
Incremental Learning of Code Authors Over Time

Siyi Gong and Hao Zhong

aShanghai Jiao Tong University, China

Abstract

Identifying code authors is important in many research topics, and various
approaches have been proposed. Recent studies show that the temporal ef-
fect can significantly affect existing approaches: their trained models rapidly
become outdated and ineffective due to the evolution of code styles over
time. To the best of our knowledge, only a recent approach tries to alleviate
the temporal effect. This approach treats the temporal effect problem as
a cross-domain problem and uses transfer learning to reduce the temporal
effect. Here, a domain refers to the time when the programmers are writ-
ing the source files. Although this approach achieves promising results on
their datasets, the evaluation of this approach shows that the effectiveness of
transferred models decreases with the increasing intervals between the source
and the target domains.

In this paper, we propose a novel approach to combat the temporal ef-
fect. In real development, source files are accumulated over time and trained
models should be continuously updated with continuous data. Based on this
insight, we use chunk-based incremental learning: we treat the accumulated
source files as data streams, and each incoming batch of data is treated as a
chunk. With this concept, we utilize an ensemble framework to maintain an
ensemble of base classifiers that are incrementally trained (with no access to
previous data) on incoming chunks of data. The base classifiers are dynam-
ically weighted according to their effectiveness on the current data chunk,
and these classifiers are combined with a dynamically weighted voting. We
evaluate the effectiveness of our approach using two datasets of programs
written in C++ and Java. Our evaluation results show that our incremental
learning-based approach leads to significant improvements, compared to the
previously published transfer learning-based approach. Our approach im-
proves the average accuracy from 0.7343 to 0.9017 on the Java dataset and
from 0.8016 to 0.9022 on the C++ dataset. Indeed, in the testing of all seven

Preprint submitted to Journal of Systems and Software June 6, 2025

years, our approach consistently outperforms the prior approaches.

Keywords: code authorship attribution, coding style evolution, incremental
learning

1. Introduction

Given a source file or piece of code and a set of authors, the task of code
authorship attribution is to attribute the author of this source file. Identify-
ing the authors of source files is critical in many scenarios. For example, code
repositories can record wrong code authors, since true code authors may not
have the right to submit their changes. Due to some restricts of licences, it
needs a complicated procedure to accept changes from outside programmers.
True code authors can bypass the procedure, and their true identities are not
recorded. Due to the above considerations, researchers [1, 2, 3, 4, 5, 6, 7, 8, 9]
have proposed various approaches to identify code authors. Although re-
searchers report highly positive results, they do not consider many factors in
real development. For example, in most papers, researchers assume that code
styles will not change over time, but this assumption does not hold in real
development. With the evolution of software, the code style of an author can
change over time. Traditionally, models are trained once forever, but such
models may not work well for authors whose styles are changed. As a result,
Gong and Zhong [10] report that the effectiveness of existing approaches is
significantly reduced when the impact of time is considered.

The evolving nature of open-source development calls for adaptive and
efficient approaches. However, to the best of our knowledge, only a recent
approach [11] considers the temporal effect. In particular, Li et al. [11] intro-
duce transfer learning [12] to update decayed models. Their approach tunes
a model trained from the data of a year according to the data of another
year. Although source files of code authors are accumulated each year, a
source domain can be quite different from a target domain. The effective-
ness of transfer learning will be significantly reduced if source and target
domains have many differences. As a result, although Li et al. [11] achieve
promising results, their evaluations show that the effectiveness of transferred
models decreases if the year gaps between the source and the target domains
become larger.

To improve the state of the art, we propose a novel approach called CI-
caL (Chunk-based Incremental Code Authors Learning). To resolve the

2

limitation of Li et al. [11], we introduce incremental learning since it can
incrementally update a trained model.

This paper makes the following contributions:

• The first approach called CIcaL uses incremental learning to
identify code authors. CIcaL treats the accumulated source files
as data streams, and each incoming batch of source files is treated
as a data chunk. CIcaL utilizes an ensemble framework to maintain
an ensemble of base classifiers that are incrementally trained (with no
access to previous data) on incoming chunks of data, and the base clas-
sifiers are dynamically weighted according to their performance on the
current data chunk, then these classifiers are combined with a dynam-
ically weighted voting. CIcaL incrementally tunes a trained model
year by year. In this way, CIcaL accumulates new knowledge and
continuously improves the prediction ability by dynamically updating
the trained model.

• Promising evaluation results on benchmarks. We evaluate the
effectiveness of CIcaL using a Java dataset and a C++ dataset. Com-
pared with the transfer learning-based approach [11], CIcaL improves
the average accuracy from 0.7343 to 0.9017 on the Java dataset, and im-
proves the average accuracy from 0.8016 to 0.9022 on the C++ dataset.
In addition, it works better on imbalanced data. Compared with the
transfer learning-based approach [11], CIcaL improves the average ac-
curacy from 0.5880 to 0.7772 on the imbalanced Java dataset, and im-
proves the average accuracy from 0.6266 to 0.7691 on the imbalanced
C++ dataset.

2. Preliminary

The problem. A code author’s programming style evolves over time,
which results in the earliest code samples becoming the least reliable indica-
tors of the current programming style [13]. Burrows et al. [13] use a collection
of six programming assignments with guaranteed relative timestamps from
272 students to examine the evolution of coding style, they conclude that
coding style does change over time and it takes at least three programming
tasks for coding style to settle. Considering the coding style of students can
evolve during their studies, Hansen et al. [14] examine the practical feasibil-
ity of using limited and recent writing samples from students for authorship

3

Data 2013

2012 2013 2014 2015

Data 2012 Data 2014

Timeline

Model M

Data 2015

 knowledge transfer Model M*

train testfeed

Figure 1: Transfer learning

attribution. Caliskan et al. [2] propose a random forest and abstract syn-
tax tree-based approach based on the data set extracted from Google Code
Jam, they find that skilled programmers (who can complete the more difficult
tasks) are easier to attribute than less skilled programmers. To analyze the
influence of time on source code authorship attribution, Petrik and Chuda [8]
use the Google Code Jam dataset to test if there are any significant changes
in the author’s style over time. Their results reveal significant changes in the
code style features in one year difference, which enlarges as the difference of
time increases. Bogomolov et al. [7] also demonstrate that the evolution of
programming style affects the accuracy of authorship attribution. The above
papers suggest that the temporal effect is a challenge for code authorship
identification, since the programming style of programmers evolves rapidly
with time due to their education and experience. Besides the temporal effect,
the class imbalance problem also limits the effectiveness of learned models.
To evaluate the proposed code authorship attribution models, some prior
studies [5, 6] use custom-built source code collections that include balanced
training sets. Note that an author can have many more or fewer files in
real scenarios [15]. Thus, long samples (multiple lines of code) may be avail-
able for some authors and short samples for other authors. This can also be
viewed as a case of class imbalance. Most prior approaches ignore the above
problems. Only a recent approach starts to resolve it with transfer learning.
We next introduce its basic idea.

Transfer learning. In the scenarios of transfer learning, a model learned
from a task is reused as the starting point for learning the model for an-
other task [12]. When training the new model, transfer learning changes the
weights and adds new data points to the old model. Transfer learning has
been widely used in natural language processing [16] and networking [17].

4

Data 2013

2012

Data 2012 Data 2014

Timeline

Model M

Data 2015

train

Model M+

feed

update Model M++update

feed

Model M+++update

feed

2013 2014 2015

test

Figure 2: Incremental learning

1 public static void main(String [] args) {

2 try {

3 in = new BufferedReader(new InputStreamReader(System.in));

4 out = new PrintWriter(new OutputStreamWriter(System.out));

5 int tests = nextInt ();

6 for (test = 1; test <= tests; test ++) {

7 solve();

8 }

9 in.close ();

10 out.close();

11 } catch (Throwable e) {

12 e.printStackTrace ();

13 exit (1) ;...

Figure 3: A source file written by eatmore* in 2015

Recently, Li et al. [11] used transfer learning to identify code authors. Li
et al. [11] demonstrated that if a model is trained according to the data of
2012, it can become obsolete in 2015. To update the model, as shown in
Figure 1, they introduce transfer learning to refine the model with the data
of 2015. In this way, Model M is updated to Model M∗. Transfer learning
has two inherent limitations. First, if a model was trained years ago, the
source and the target domains can have huge differences. The evaluation of
Li et al. shows that the effectiveness of transferred models decreases with the
increasing of intervals between the source and the target domains. Second,
transfer learning ignores the data between the source and target domains.
In this example, the data of 2013 and 2014 are ignored, although they can
be useful to refine models. As a result, although their proposed approach
can reduce the impact of time, the evaluation of Li et al. shows that the
effectiveness of transferred models decreases with the increasing of intervals
between the source and the target domains.

Incremental learning. In the scenarios of incremental learning, models
are incrementally updated with continuous data. It represents a dynamic
technique that is designed for the scenarios when training data are accumu-
lated over time [19]. In real development, source files are accumulated, and

5

Table 1: Metrics of eatmore* defined by [18, 3]
Metrics sample 2012 2013 2014 2015
while 0.6667 0.2101 0.3152 0.2252 0.2634
for 0.3333 0.7807 0.6848 0.7710 0.7366
do 0 0.0092 0 0.0038 0

cyclic 1 2 1.6667 1.9 1.9286
if 0.125 1 1 1 08255

switch 0.875 0 0 0 0.1744
if-else 1 0.8771 0.7966 0.8090 0.9131
static 0.1809 0.1395 0.1637 0.1489 0.1652
class 0.0106 0.0104 0.0117 0.0099 0.0102
import 0.1170 0.0966 0.1072 0.0996 0.1042
new 0.0532 0.0778 0.0711 0.0736 0.073

public 0.0213 0.0206 0.0196 0.0184 0.0193
this 0 0.0065 0.0074 0 0.0015
try 0.0106 0.0077 0.0087 0.0082 0.0089

throw 0 0.0038 0 0.0017 0.0022
catch 0.0106 0.0077 0.0087 0.0082 0.0089
final 0 0.0082 0.0057 0.0032 0.0039
private 0 0.0009 0 0 0

instanceof 0 0.0004 0.0008 0 0
implements 0 0.0012 0.0006 0.0004 0.0005

super 0 0 0 0.0003 0

this scenario well fits the target of incremental learning. Under this circum-
stance, we decided to build an incremental learning-based model. As shown
in Figure 2, to better identify the authors of 2015, we use incremental learning
to accumulate new knowledge from 2013 and 2014 and continuously improve
the ability of the model. In this way, Model M is updated to Model M ++.
Compared to transfer learning, incremental learning has the ability to sus-
tain classification accuracy. Besides, incremental learning can incrementally
learn the evolving coding style of code authors year by year.

In summary, transfer learning aims to use the knowledge gained from
an existing task to solve a new task that is related to the existing one [20].
Incremental learning aims to incrementally update the model with new data
while retaining the knowledge gained from previous data [21]. Different from
transfer learning, incremental learning aims to gradually accumulate new
knowledge and continuously improve the ability of a model. Incremental
learning is useful in situations where you need to continuously increase the
data set and update the model, such as when you want to continuously train
the model to adapt to data changes over time.

6

3. Motivating Example

In this section, we introduce the benefits of incremental learning. The
code styles of a code author can change over time. For example, Figure 3
shows a source file written by eatmore* in 2015. To protect the privacy
of programmers, we use asterisks to hide their real names. To define the
code styles of code authors, the prior approaches [18, 3] extract a set of
code metrics, and these approaches rely on the code metrics to identify code
authors. To illustrate how the code styles evolve over time, we calculate the
code metrics of source files written by eatmore* from 2012 to 2015. Table 1
shows the result. Column “Metrics” lists the code metrics. From each
source file, we build an abstract syntax and analyze the tree to collect the
metrics. The top three rows list the ratio of while, for, and do statements
in all loop statements, respectively. The fourth row lists the preference for
cyclic statements. According to the most frequent cyclic statement, we set
the values to 1, 2, and 3, respectively. The fifth and sixth rows list the ratio
of if and switch statements in all conditional statements, respectively. The
seventh row lists the percentage of if in all if and else. The remaining
rows list the ratio of corresponding keywords to lines of non-comment code
lines. Column “sample” lists the values of a program. Columns “2012”,
“2013”, “2014”, and “2015” list the averages of the code metrics of source
files written by eatmore* in the corresponding year.

Although the differences of a code author look minor, Li et al. [11] report
that the prediction accuracy of the prior approaches decreases significantly
since the differences accumulate over time. For instance, in 2012, eatmore*
preferred to write for loops, but in 2015, this code author changed to write
while loops. If an approach trains the models from the data of past years, it is
unlikely to identify the correct code authors. As a result, when it is trained
on the data of 2012, Multi-χ wrongly identifies the author of Figure 3 as
goalboy1015*.

Transfer learning learns a source-domain model from the data of 2012,
and tunes a target-domain model with the data of 2015. Combining the data
of the two years can lead to better models. For example, the ratio of private
keywords to lines of non-comment code in the source file of 2015 shown in
Figure 3 is 0, but this value in 2012 is more than zero. Meanwhile, as Table 1
shows that this value in 2015 is 0, transfer learning can tune the model that
is trained from the data of 2012 accordingly. However, the sample file in
Figure 3 contains values that are different from the data of 2012 and 2015.

7

Data chunk 1 Data chunk 2 Data chunk 3 Data chunk t
Data chunk t+1

(unlabelled)

1. code

extractor

2. learner

3. author

predictor

Word2Vec 1 Word2Vec 2 Word2Vec 3 Word2Vec t

Base

classifier 1
Base

classifier 3

Base

classifier 2

Base

classifier t

Base classifier set

H(2)
Base classifier set

H(3)

Base classifier set

H(t)

Word2Vec t+1

Base classifier

set H(t)

Code Author

…… Input

Output

……

……

Figure 4: Approach overview

For example, in this sample file, eatmore* writes no throw statements, but in
the source files of 2012 and 2015 both, this author wrote throw statements.
Partially due to this difference, the tuned model wrongly identifies the author
of Figure 3 as it3*, when TimeDA trains a model from the data of 2012 and
tunes this model with the data of 2015.

With incremental learning, CIcaL can learn code styles from the data
of all years. For example, Table 1 shows that eatmore* started to develop a
preference for writing while loops in 2013. Meanwhile, some styles can be
inferred from the years between 2012 and 2015. For example, the ratio of
this keywords to lines of non-comment code in the source file of 2015 is 0,
but this value in 2012 is more than zero, while Table 1 shows that this value
in 2014 is 0, indicating that when an approach trains the models from the
data of 2012 and 2014, it is likely to learn this code metrics. As a result,
CIcaL correctly identifies the author of Figure 3.

We next introduce how CIcaL builds such models.

4. Approach

Figure 4 shows the overview of our approach CIcaL. It consists of a
code extractor (Section 4.1), a learner (Section 4.2), and an author predictor
(Section 4.3). The input of CIcaL is a series of data chunks (source files

8

written within a period of time), and the output of CIcaL is an updated
model. Given a source file whose author is unknown, the updated model can
predict its code author.

4.1. Code Extractor

As the first step, CIcaL transforms source code to a numerical rep-
resentation. Based on their representations, the prior approaches can be
roughly divided into two categories. The first category of approaches [2, 3]
extract code meatrics. For example, Yang et al. [3] extract 19 code met-
rics. Table 1 provides some examples of their code metrics. As it is chal-
lenging to identify general code metrics [7], most other approaches use the
off-the-shelf techniques such as TF-IDF [5] and word2vec [22]. Most prior
approaches [23, 24, 25] use word2vec [22] to encode source files, and some
approaches [6] use both representations. We use word2vec to encode Java
and C++ source files, and we compare the results of encoding with word2vec
and TF-IDF in our evaluations. Figure 4 shows that CIcaL is built upon
a set of base classifiers. The prior approaches typically reduce the problem
of identifying code authors to a classification problem. If we select the same
representation, it is easier to integrate CIcaL with the prior approaches.

We consider segments of source code as sequences of terms and expressions
for training a word2vec model, which in turn is used to generate representa-
tions of code terms and expressions. The word2vec models are constructed
using the training dataset only. When applying the representation scheme,
the out-of-vocabulary (OOV) problem may occur during the validation and
testing part of the experiment. There are several approaches for handling
the OOV problem [26]. In this study, unseen terms are represented with
zero-vectors when using word2vec.

4.2. Learner

At timestamp t− 1, CIcaL maintains m classifiers in the set H(t− 1) =

H
(t−1)
1 , · · · , H(t−1)

m trained on the data chunks from timestamp 1 to t − 1.
When CIcaL receives a new data chunk D(t) at timestamp t, it learns a
new classifier H on the current data chunk and merges H with H(t − 1)
to form H(t). The classifiers trained on each chunk are associated with the

vector of weights, denoted as w(t) = [w
(t)
1 , · · · , w(t)

m]T , which measures the
importance of the classifiers in the ensemble. When the new classifier H is
created, its initial weight is set at 1 and m is increased by 1. To adapt the
previously learned classifiers to new concepts, the weight w

(t)
j for classifier

9

Algorithm 1: Train CIcaL
Input: Data chunk at timestamp t: D(t) = xi ∈ X, yi ∈ Y , i = 1, · · · , N , the threshold for deleting

base classifiers θ, the base classifier set H(t− 1) = H
(t−1)
1 , · · · , H(t−1)

m , the weights of base classifiers,

w(t−1), the number of base classifiers m, and the ensemble size T .
for i← 1 to N do

Predict xi by the ensemble classifier:

ȳ = sign(
∑m

j=1 w
(t−1)
j H

(t−1)
j (xi));

end for
for j ← 1 to m do

Calculate the error ϵ
(t)
j for classifier H

(t−1)
j on D(t);

Update weight of base classifiers:

w
(t)
j = (1− ϵ

(t)
j)w

(t−1)
j ;

end for
Remove classifiers with weights less than θ:

H(t)←H(t− 1)\
{
H

(t−1)
j |w(t)

j < θ
}
;

m← |H(t)| ;
Create new base classifier and initialize its weight:

m← m− 1;
H ← UnderBagging(D(t), T);
H(t)←H(t) ∪H);

w
(t)
m ← 1;

Output: Base classifier set H(t), weight of base classifiers w(t), number of base classifiers m,
prediction ȳ.

H
(t)
j is reduced on each timestamp after it is created: w

(t)
j = (1− ϵ

(t)
j)w

(t−1)
j ,

where j = 1, · · · ,m − 1, and ϵ
(t)
j is the testing error of H

(t)
j on the current

data chunk D(t). The error ϵ
(t)
j can be calculated by an error function like

F1 or G-mean, since F1 and G-mean can be used to evaluate the model
performance under unbalanced data. Thus, the weights of the classifiers
trained on the past chunks are reduced based on their effectiveness on the
current data chunk. As this weight reduction is accumulated over time, the
weight w

(t)
j is equal to:

w
(t)
j =

t∏
(τ=l+1)

(1− ϵ
(τ)
j) (1)

where l is the timestamp when H
(t)
j is created. As (1−ϵ

(τ)
j) ≤ 1, the classifier

weight is getting smaller over time according to its error on each chunk after
it is created. Then, the classifiers with weight less than the threshold θ
are removed and the counter m is also reduced according to the number of
classifiers left. If a classifier is going to be removed, there are two factors
that make its weight lower than θ. One is that the classifier is trained on a

10

Algorithm 2: UnderBagging
Input: Data D(t) = xi ∈ X, yi ∈ Y , i == 1, · · · , N , the number of positive samples Np, the number of

negative samples Nn, ensemble size T .
for t← 1 to T do

if Np < Nn then
Ns ← Np;

else
Ns ← Nn;

end if
D(p)← Bootstrap Ns positive samples;
D(n)← Bootstrap Ns negative samples;
ht ← BaseLearner(D(p),D(n));

end for
Output: Base classifierH(x) = sign(

∑T
t=1 ht(x)).

quite early timestamp that makes the production in Equation 1 small. The
other is that the concept changes in recent chunks and the testing error of the
classifier is large on those chunks. Thus, this kind of classifier is less likely to
provide positive effects to the prediction on the current and following chunks.
Finally, the model predicts the incoming data x in D(t+1) by the ensemble
of H(t) associated with w(t):

sign(
m∑
j=1

w
(t)
j H

(t)
j (x)) (2)

Algorithm 1 shows the training process of CIcaL. In real development, a
few core programmers write most code lines, and in some extreme cases,
some programmers only contribute several code lines [15], which means that
researchers encounter extreme data imbalance problems when identifying real
authors. In CIcaL, we use UnderBagging [27] as the base learner to handle
imbalanced data. In each bagging iteration, we carry on undersampling on
the majority class to make the training data balanced.

4.3. Author Predictor

As shown in Figure 4, for a new unlabelled data chunk t + 1 (a piece of
new source code or a new source file), we first feed it to our code extractor.
After it obtains the code embeddings for the data chunk t + 1, CIcaL uses
the ensemble of base classifiers (base classifier set H(t) trained by the learner
component) to predict the code embeddings of data chunk t + 1. This new
unlabelled data chunk t + 1 is also being used to train a new base classifier
and being merged into the ensemble base classifier set. Specifically, for the

11

learner component, the number of base classifiers in the ensemble T is set at
5 to prevent draw result since we use dynamically weighted voting to combine
these base classifiers. The threshold to remove the dated classifier θ is set
at 0.001. As pointed out by Kolter et al. [28], the value of θ has nearly no
influence on the accuracy, and it only affects the number of stored classifiers.
Geometric mean (G-mean) error ϵgm = 1 −

√
TPR · TNR is chosen as the

error function used in the learner component, where TPR is the true positive
rate and TNR is the true negative rate. We select the G-mean error as the
error function. As recurrent neural networks, LSTMs [28] are widely used as
sequence classifiers in various research topics. We select LSTM [28] as the
base classifier of CIcaL.

5. Evaluation

Our study aims to answer the following research questions:

(RQ1) How does CIcaL improve the state of the art?

(RQ2) How effective is CIcaL on the imbalanced data?

(RQ3) How effective are the code extractor techniques?

More details of the evaluations are listed on our website:
https://github.com/gongsiyi/authorship/

5.1. Setting

5.1.1. Benchmark

In our evaluation, we use the same datasets of Li et al. [11]. Li et al. [11]
collected C++ and Java source files between 2012 and 2018 from Google Code
Jam (GCJ) entries to build the datasets. In particular, they remove authors
who write less than 7 program files or write source files only in a year. As
GCJ records the authors of source files, its recorded authors are considered
as the labels of source files. Table 2 shows the two datasets (GCJ Java and
GCJ C++). Column “Year” lists the time of source files. Column “File”
lists the number of source files. Column “LOC” lists the number of code
lines. Column “Author” lists the number of authors. In total, the two
datasets contain more than 3,000 source files that are written by 48 authors.

12

https://github.com/gongsiyi/authorship/

Table 2: Our datasets

Year
Java C++

File LOC Author File LOC Author

2012 195 25,055 20 324 31,069 28

2013 189 28,942 20 322 30,462 28

2014 251 38,472 20 357 37,350 28

2015 239 38,164 20 328 33,906 28

2016 248 40,033 20 333 32,673 28

2017 229 42,281 20 304 31,648 28

2018 243 30,673 20 363 30,645 28

total 1,594 243,620 20 2,331 227,753 28

5.1.2. Measures

Like all the prior approaches [11, 1, 2, 3, 4, 5, 6, 7, 8, 9], we select accuracy
to measure the results. Accuracy is defined as follows:

Accuracy =
fc

ftotal
(3)

where fc denotes the number of correctly attributed source files, and ftotal
denotes the total number of source files.

Besides accuracy, we select matthew correlation coefficient (MCC) [29]
and F1 score [30] as our measures. MCC is a reliable measure when the data
are imbalanced.

5.1.3. Statistical hypothesis testing

To ensure the reliability of our results, we use statistical hypothesis test-
ing. In this approach, a null hypothesis, which is represented by H0, and its
opposite, alternative hypothesis which is represented by Ha, are defined first.
Then, acceptance of the null hypothesis (and rejection of the alternative) or
vice versa would be evaluated by considering a particular confidence level of
the corresponding statistical test. If the confidence level of rejecting a null
hypothesis exceeds a specified threshold, the alternative hypothesis will be
accepted (and the null hypothesis will be rejected). Otherwise, the alterna-
tive one would be rejected (and the null hypothesis would be accepted). We
will accept an alternative hypothesis in this paper if the confidence level of
accepting it is greater than 95%, i.e., the p-value is less than 0.05.

13

5.2. RQ1. Comparison with baselines

5.2.1. Baseline

In our evaluation, we select two baselines. From classical approaches,
we select Multi-χ [6], since it is a recent approach. Multi-χ divides source
files into segments, and encodes each segment as a sequence of n-dimensional
data with TF-IDF [5]. Taking the sequences and their label as its input,
Multi-χ trains a model with BiLSTM [31]. As Abuhamad et al. [6] did not
release their tool, we implemented the tool upon Keras [32], according to
their paper [6]. On the C++ dataset of 2015, our implementation on Multi-
χ achieved an accuracy of 80.18%, and the result is close to what is reported
in their paper (an accuracy of 79.62%).

We select Li et al. [11], since it is the first approach that considers the
decay of models. Their approach is called TimeDA. It uses domain adapta-
tion [11] to tune decayed models. As Li et al. [11] released their tool and
dataset on Github, we use their released tool. TimeDA uses DL-CAIS [5]
and PbNN [7]. In particular, DL-CAIS uses recurrent neural networks and
fully connected layers for learning, and uses random forests for authorship
attribution. PbNN uses a fully connected layer with softmax activation. The
released version of TimeDA uses only PbNN, and we select this version.

5.2.2. Training and testing process

Li et al. [11] provide a Java dataset and a C++ dataset. We divide each
dataset into 7 chunks by year.

For Multi-χ, we train a model from the data of a year, and test the trained
model on the data of the next year. In total, for 7 chunks of each dataset,
we obtain 6 trained models and 6 tested results.

For TimeDA, we follow the setting of Li et al. [11]. In particular, we
train a model from the data of a year. After that, we transfer this model
to subsequent years and test transferred models on corresponding years. For
instance, we train a model from the data of 2012. After that, we transfer
and test this model on the data from 2013 to 2018 separately. In total, we
train 6 models and obtain 21 tested results.

For CIcaL, we train a model from the data of a year. After that, we
update this model with the data of the follow-up years subsequently and
test the updated model on the data of the follow-up years. For instance, the
model trained from 2012 is updated with the data from 2013 to 2018, and
each updated model is tested on the data of the corresponding year. In total,
we obtain 1 model and 6 evaluation results.

14

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(a) Accuracy

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1
_s

co
re

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(b) F1 score

2013 2014 2015 2016 2017 2018
Year

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
cc

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(c) MCC

Figure 5: The improvement on GCJ C++ dataset

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(a) Accuracy

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1
_s

co
re

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(b) F1 score

2013 2014 2015 2016 2017 2018
Year

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
cc

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(c) MCC

Figure 6: The improvement on GCJ Java dataset

In a previous submission, a reviewer asks us to test TimeDA in an envis-
aged setting. In this setting, we incrementally update the models of TimeDA.
In particular, we train a model of TimeDA from the data of a year. After
that, we incrementally transfer this model to subsequent years and test the
transferred model on the data of corresponding years. For instance, the
model trained from 2012 is incrementally transferred to 2013 to 2018, and
each transferred model is tested on the data of the corresponding year. Even-
tually, we obtain 1 model and 6 evaluation results from each dataset. We
call this setting incremental TimeDA.

We calculate the average accuracy, f1 score, and MCC to compare the
effectiveness.

5.2.3. Result

Figures 5 and 6 show the results. The horizontal axes list the years of
the testing sets, and the vertical axes list the corresponding measures. The
red and the black dashed lines depict the results of Multi-χ and CIcaL,
respectively. Compared with Multi-χ, CIcaL achieves better results in all
measures on both benchmarks. The least improvements occur in the data of
2016 in the C++ dataset and the data of 2015 in the Java dataset. Even in

15

the two cases, CIcaL improves the accuracy, f1 score, and MCC of Multi-χ
on the 2016 C++ dataset by 0.0598, 0.0672, and 0.0862, respectively. CIcaL
improves the accuracy, f1 score, and MCC of Multi-χ on the 2015 Java dataset
by 0.0940, 0.1004, and 0.1581, respectively. We use the McNemar’s test [33]
to check whether the difference between Multi-χ and CIcaL is significant.
For both datasets, the p-value results are below 0.05. The results show that
the difference between the results of Multi-χ and CIcaL is significant.

The solid lines depict the results when TimeDA [11] trains a model from
the data of a year and transfers the model to the corresponding year. CI-
caL achieves better results than TimeDA except in 2015 of the C++ dataset.
When the year gap between the training and testing set is fewer than three,
TimeDA achieves better results than Multi-χ, although it is poorer than CI-
caL. When the year gap is larger than three, TimeDA achieves even poorer
results than Multi-χ. We check whether the difference between TimeDA
and CIcaL is significant. The p-value results are below 0.05. The above
observations lead to a finding:

Result 1: When the temporal effect is considered, CIcaL significantly
outperforms Multi-χ and TimeDA.

When the year gap between the training and testing set is 1, the values of
TimeDA are close to ours. As shown in the blue lines of Figures 6a, 6b, and
6c, the accuracy, f1 score, and MCC of TimeDA are more than CIcaL by
0.0550, 0.0484, and 0.1445 when TimeDA trains in 2014 of the Java dataset
and tests the model in 2015 of the Java dataset. Still, when the gap between
the training and the testing years becomes larger, all values drop significantly.
For instance, as shown in the blue lines of Figures 6a, 6b, and 6c, although
the initial models of TimeDA are better than ours, they become poorer than
ours when TimeDA transfers the model to follow-up years. This finding is
consistent with the evaluation results of Li et al. [11]. In Figures 5 and 6, the
results of TimeDA and Multi-χ significantly drop in the data point of 2018.
The results are consistent with the evaluation results of Li et al. [11]. Their
results also significantly drop in the data of 2018. The data for this year can
have more differences. Still, CIcaL is more effective in handling the time
issue than TimeDA since its lines are smoother. The observations lead to a
finding:

16

Result 2: CIcaL is more effective in handling temporal changes than
TimeDA.

The blue dashed lines depict the results when TimeDA [11] trains a model
from the data of 2012 and transfers this model incrementally over time.
Compared with red dashed lines, TimeDA produces mixed results under the
settings of Li et al. [11] and our new setting. In both datasets, the blue and
red dashed lines twist together. Still, CIcaL always produces better results
when TimeDA is used in a way that is similar to incremental learning. Under
this setting, CIcaL improves the average accuracy, f1 score, and MCC by
0.1546, 0.1549, and 0.2780 on the Java dataset, respectively. On the C++
dataset, the improvements are 0.1000, 0.1010, and 0.1890, respectively. We
also check whether the difference between incremental TimeDA andCIcaL is
significant. As the p-value results are below 0.05, the difference is significant.
The above observations lead to a finding:

Result 3: Even if TimeDA is used incrementally (the incremental
TimeDA setting), it is not as effective as CIcaL.

To understand the impact of programming languages, we use the Mc-
Nemar’s test [33] to check the result difference between the Java and C++
datasets. The p-value results are 0.4915 (accuracy), 0.4896 (f1 score), and
0.5150 (MCC). The results show that the difference is not significant, and
the impact of programming languages is minor.

Result 4: CIcaL performs similarly on both Java and C++ datasets.

In summary, CIcaL significantly improves Multi-χ and TimeDA. Al-
though TimeDA considers the time issue, CIcaL is more effective in han-
dling the changes over time than TimeDA, even if TimeDA incrementally
transfers its model.

5.3. RQ2. The Impact of Imbalanced Data

5.3.1. Setup

In real development, a few core programmers write most code lines [15],
but the dataset of Li et al. [11] is relatively balanced since they remove
authors whose files are less than 7. In this RQ, we build an imbalanced Java
dataset and an imbalanced C++ dataset. In each imbalanced dataset, the

17

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(a) Accuracy

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1
_s

co
re

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(b) F1 score

2013 2014 2015 2016 2017 2018
Year

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
cc

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(c) MCC

Figure 7: The impact of imbalanced data (GCJ C++ dataset)

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(a) Accuracy

2013 2014 2015 2016 2017 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1
_s

co
re

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(b) F1 score

2013 2014 2015 2016 2017 2018
Year

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
cc

DA_train 2012
DA_train 2013
DA_train 2014

DA_train 2015
DA_train 2016
DA_train 2017

TimeDA_incremental
Multi-
CIcaL

(c) MCC

Figure 8: The impact of imbalanced data (GCJ Java dataset)

percentage of the minority in each year is fixed at 1% of the data size. For
each dataset, we choose five minority classes. Both imbalanced datasets were
divided into 7 chunks by year. To adjust for imbalanced data, as introduced
in Section 4.2, in each bagging iteration, we carry on undersampling on the
majority class to make the training data balanced. The training and testing
process is the same as the process in RQ1 (see Section 5.2.2 for details).

5.3.2. Result

Figures 7 and 8 show the results. Their horizontal axes, vertical axes,
and lines have the same definitions as those of Figures 5 and 6.

Comparing the original setting (Figures 5 and 6) with the imbalanced
setting (Figures 7 and 8), we find that the imbalanced data affect all the
approaches. For Multi-χ, the average accuracy, the f1 score, and the MCC
values decrease by 0.1828, 0.1215, and 0.2904 on the Java dataset, respec-
tively. On the C++ dataset, the values decrease by 0.2323, 0.1509, and
0.3870, respectively. For TimeDA, the average accuracy, the f1 score, and
the MCC values decrease by 0.1115, 0.0707, and 0.0884 on the Java dataset,
respectively. On the C++ dataset, the values decrease by 0.1548, 0.1534,
and 0.1824, respectively. For incremental TimeDA, the average accuracy,

18

the f1 score, and the MCC values by 0.1174, 0.1289, and 0.1250 on the Java
dataset, respectively. On the C++ dataset, the values decrease by 0.1687,
0.1689, and 0.2060, respectively. For CIcaL, the average accuracy, the f1
score, and the MCC values decrease by 0.1245, 0.0966, and 0.2077 on the Java
dataset, respectively. On the C++ dataset, the values decrease by 0.1331,
0.1316, and 0.2059, respectively.

The differences in both imbalanced datasets are significant since the p-
value results of the McNemar’s test [33] are below 0.05. In particular, MCC
values of each approach decrease more than accuracy and f1 score values.
This observation is consistent with the findings of Chicco and Jurman [29].
The above observations lead to a finding:

Result 5: Imbalanced data significantly affects all the approaches.

Although the imbalanced setting affects all the approaches, CIcaL achieves
the best results on both datasets.

Comparing the results between Multi-χ and CIcaL, we find that the dif-
ferences become larger. In RQ1, the least improvements occur in 2016 in the
C++ dataset and 2015 in the Java datasets. In the two cases, CIcaL im-
proves the accuracy, f1 score, and MCC of Multi-χ on the 2016 C++ dataset
by 0.0598, 0.0672, and 0.0862, respectively. CIcaL improves the accuracy, f1
score, and MCC of Multi-χ on the 2015 Java dataset by 0.0940, 0.1004, and
0.1581, respectively. When data are imbalanced, the least improvements oc-
cur in 2013 of the imbalanced C++ dataset and the imbalanced Java dataset.
In the two cases, CIcaL improves the accuracy, f1 score, and MCC of Multi-χ
on the imbalanced C++ dataset by 0.1532, 0.1338, and 0.2049, respectively.
CIcaL improves the accuracy, f1 score, and MCC of Multi-χ on the imbal-
anced Java dataset by 0.1724, 0.1539, and 0.3294, respectively. The gaps
of the accuracy, f1 score, and MCC between the two settings on the C++
dataset increase 0.0934, 0.0666, and 0.1186, respectively. The gaps of the
accuracy, f1 score, and MCC between the two settings on the Java dataset
increase 0.0784, 0.0532, and 0.1713, respectively.

Comparing the results between TimeDA and CIcaL, we notice that the
initial models of TimeDA become poorer. For instance, in RQ1, when the
model is trained from the 2014 data of the Java dataset, the MCC value of
TimeDA is more than CIcaL by 0.1445. When the data are imbalanced, the
MCC value of TimeDA is more than CIcaL by only 0.0354. When the year
gap becomes larger, the effectiveness of TimeDA also decreases significantly

19

Table 3: The impact of representation (GCJ C++ dataset)

Year
Improvement w Improvement t Delta
Acc F1 Mcc Acc F1 Mcc Acc F1 Mcc

2013 0.23 0.23 0.45 0.20 0.20 0.39 0.03 0.03 0.06

2014 0.10 0.10 0.20 0.07 0.07 0.16 0.03 0.03 0.03

2015 0.07 0.07 0.14 0.04 0.04 0.09 0.03 0.04 0.05

2016 0.06 0.07 0.09 0.02 0.02 0.03 0.04 0.04 0.06

2017 0.09 0.09 0.15 0.05 0.05 0.09 0.04 0.04 0.06

2018 0.20 0.21 0.38 0.17 0.17 0.34 0.03 0.03 0.04

average 0.12 0.13 0.23 0.09 0.09 0.18 0.03 0.04 0.05

on both datasets. As a result, its results are poorer than ours.
Comparing the results between incremental TimeDA and CIcaL, we find

that the differences between initial models become smaller. For instance, in
RQ1, when the model is tested from the 2013 data of the C++ dataset, the
MCC value of incremental TimeDA is less than CIcaL by 0.2665. When
the data are imbalanced, the MCC value of incremental TimeDA is less than
CIcaL by only 0.0136. Still, CIcaL always produces better results when
TimeDA is used in a way that is similar to incremental learning. Under this
setting, CIcaL improves the average accuracy, f1 score, and MCC by 0.1475,
0.1872, and 0.1953 on the Java dataset, respectively. On the C++ dataset,
the improvements are 0.1356, 0.1383, and 0.1891, respectively. The above
observations lead to a finding:

Result 6: CIcaL is the less affected approach by the imbalanced
dataset.

In summary, although the imbalanced data problem significantly affects
all the approaches, CIcaL is the least affected.

5.4. RQ3. The Impact of Representation

5.4.1. Setup

To encode source code, Multi-χ uses TF-IDF [5]; CIcaL uses word2vec [22];
and the version of TimeDA in our study uses code2vec [7]. Although we
achieved better results in RQs1 and 2, a reviewer from our past submis-
sion criticizes that the improvements in RQs 1 and 2 may not be caused by
incremental learning but by the different encoding techniques.

As word2vec is more advanced than TF-IDF, the criticism can hold when
we compare Multi-χ with CIcaL. To resolve this concern, we replace the

20

Table 4: The impact of representation (GCJ Java dataset)

Year
Improvement w Improvement t Delta

Acc F1 Mcc Acc F1 Mcc Acc F1 Mcc

2013 0.21 0.19 0.40 0.15 0.13 0.32 0.06 0.07 0.08

2014 0.13 0.12 0.26 0.10 0.09 0.23 0.03 0.03 0.03

2015 0.05 0.06 0.07 0.00 0.00 0.00 0.05 0.06 0.07

2016 0.10 0.10 0.17 0.05 0.06 0.12 0.04 0.04 0.05

2017 0.12 0.12 0.121 0.09 0.10 0.20 0.02 0.02 0.01

2018 0.28 0.26 0.57 0.25 0.23 0.52 0.03 0.03 0.05

average 0.15 0.14 0.28 0.11 0.10 0.23 0.04 0.04 0.05

word2vec encoder of CIcaL with TF-IDF, and compare the results after the
replacement. Meanwhile, word2vec is trained for encoding natural language
texts, but code2vec is trained for encoding source code. If we update the
encoder of CIcaL from word2vec to code2vec, the results of CIcaL should
be even better. As the improvements are clear, we do not replace our encoder
with code2vec in this RQ. The two encoders are as follows:

In TF-IDF, a term t in file d of a corpus D is assigned a weight using
TF − IDF (t, d,D) = TF (t, d) × IDF (t,D), where TF (t, d) is the term
frequency (TF) of t in d and IDF (t,D) = log (|D| /DF (t,D))+1, where |D|
is the number of documents in D and DF (t,D) is the number of documents
containing the term t. We represent code segments with the top 3,000 TF-
IDF features based on the order of term frequencies across all code segments.

In word2vec, source code is encoded to vectors. In particular, segments
with n lines are represented as a sequence of size n × Linecommon × d,
where d is the dimension of terms. For example, a segment with one line is
represented as a tensor of size 1× 100× 128, since Linecommon = 100 and
the dimension of word2vec representations is 128.

5.4.2. Result

Tables 3 and 4 show the results. Columns “Improvement w” list the im-
provement of CIcaL compared to Multi-χ. Columns “Improvement t” list
the improvement of CIcaL using TF-IDF representation compared to Multi-
χ. Columns “Delta” list the delta between Columns “Improvement w”
and Columns “Improvement t”. After the encoders are aligned, CIcaL
improves the average accuracy, f1 score, and MCC by 0.11, 0.10, and 0.23
on the Java dataset, respectively. On the C++ dataset, the improvements
are 0.09, 0.09, and 0.18, respectively. Compared with Multi-χ, CIcaL us-

21

ing Word2vec representation improves the average accuracy, f1 score, and
MCC by 0.15, 0.14, and 0.28 on the Java dataset, respectively. On the C++
dataset, the improvements are 0.12, 0.13, and 0.23, respectively. The re-
sults show that CIcaL using TF-IDF representation still improves Multi-χ
compared to CIcaL using Word2vec representation. The above observations
lead to a finding:

Result 7: CIcaL achieves better results than Multi-χ even if its
encoder is aligned with Multi-χ.

As the encoder has only minor contributions, the findings in RQs 1 and 2
are reliable and our improvements are mainly caused by incremental learning.

6. Limitations and Future Work

In this section, we analyze our limitations and how to improve our ap-
proach in future work.

Limitation 1: No existing approach can identify unseen code
authors to the best of our knowledge. According to Results 5 and 6,
CIcaL significantly improves the prior approach [11] when handling imbal-
anced data. Although it is difficult to identify unseen code authors, it should
be feasible to identify code authors with few observations. Still, we do not
evaluate our approach in such extreme cases. To learn from a few obser-
vations, an approach should keep learning and recognizing new classes with
few labeled instances. In image [34] and language domains [35], some ap-
proaches can resolve the few-shot learning problem, and some other few-shot
techniques [36, 37] can also be helpful. In future work, we plan to borrow
their ideas and identify rarely-seen code authors.

Limitation 2: In our benchmark, each source file contains modi-
fications from only a code author. This setting is used in the evaluations
of all prior approaches [6, 5, 11]. Theoretically, it is feasible to identify mul-
tiple code authors for a given source file if we divide this source file into
code segments. Gong and Zhong [10] build such a benchmark, in which each
source file can have multiple code authors. However, Li et al. [11] report that
this benchmark is too challenging for even advanced techniques. To make a
meaningful comparison, we reuse the benchmark built by Li et al. [11]. As
this benchmark is less challenging, the effectiveness of all approaches can be
reduced. We plan to try more challenging benchmarks in future work.

22

Limitation 3: We use naive techniques to encode source code.
When encoding source code, researchers [2, 3] use explicitly designed language-
specific features. For example, Yang et al. [3] define 19 software metrics of
Java programs to identify code authors. Caliskan et al. [2] define 30 software
metrics of C and C++ programs. To work with code in various program-
ming languages in a uniform way, Abuhamad et al. [6, 5] represent code using
word2vec and TF-IDF, respectively. Bogomolov et al. [7] represent code us-
ing path-based representation [38]. As a learning method for generating dis-
tributed representations of tokens, word2vec has shown remarkable success
in a wide range of source code embedding applications (e.g., [23, 24, 25, 39]).
Some more advanced techniques like CodeBERT [40] and CodeT5 [41] are
more suitable to encode source code. However, we use word2vec to encode
code since we must make a fair comparison with prior approaches. Result 7
shows that the difference between word2vec and TF-IDF is minor. Even if
we use word2vec and TimeDA uses a better model like code2vec, our result is
already better, which highlights the significance of our incremental learning
framework. In addition, other code metrics like identifier lengths and word
compound separations can also be useful and worthy of further exploration.

Limitation 4: We did not evaluate the impact of the chunk size.
To align our setting with that of TimeDA [11], we set the chunk size as one
year. This setting is not optimized, and other chunk sizes can further improve
our results. Even if this parameter is not optimized, we have achieved better
results than TimeDA. In future work, we will explore its impact.

7. Related Work

Our work is related to the following research topics:
Source code authorship attribution. Considering the coding style of

programmers may evolve during their studies, Caliskan et al. [2] extracted
a set of 25 programmers from 2012 who are also contestants in 2014’s com-
petition. They trained a random forest classifier on some files from these
25 programmers’ submissions in 2012 and tested the trained model on the
instances from 2014. They concluded that coding style is preserved up to
some degree throughout the years. Abuhamad et al. [5] used the programs
from 2014 to 2015 as the training set and the programs from 2015 to 2016
as the testing set to train and test their method. According to their results,
they concluded that the temporal effect on their accuracy is minor. However,
Bogomolov et al. [7] conducted an empirical study to explore the influence

23

of time on their proposed approach, they found that as programmers’ coding
practices evolve over time, learning on older contributions to attribute au-
thorship of the new code leads to a lower accuracy of attribution on a span
of several months to years. Only a recent approach [11] offered a solution to
reduce the impact of time on code authorship attribution. This approach [11]
proposed to use a transfer learning-based approach to reduce the impact of
time. In this paper, we propose to use an incremental learning-based ap-
proach to reduce the impact of time on code authorship attribution.

Code provenance analysis. In art and antiques, the term “prove-
nance” is used to denote a set of evidence as to the origin and history of an
artifact. Increasingly, the term provenance is being used within the context
of software development. Developers, managers, QA team members, and
other stakeholders often wish to understand how and why a feature, com-
ponent, chunk of code, test suite, or other development artifact came to be
where it is [42]. Davies et al. [43] introduce the general concept of software
Bertillonage, a method to reduce the search space when trying to locate a
software entity’s origin within a corpus of possibilities. Rousseau et al. [44]
conduct an empirical study to explore the possibilities to track provenance
of software source code artifacts within the largest publicly accessible cor-
pus of publicly available source code. As introduced by Li et al. [45], code
provenance techniques including clone detection [46, 47, 48] and authorship
attribution [9, 49, 50, 5].

Code ownership analysis. As defined by Hattori et al. [51], the own-
ership of a programmer on a file quantifies the amount of knowledge the
programmer has on this file. Greiler et al. [52] mine the relation between
code ownership and software quality. Diaz et al. [53] use code ownership to
assist the recovery of links between source files and high-level designs (e.g.,
use cases). Other researchers [54, 55] analyze the relationship between code
ownership and software quality. Penta and German [56] reveal that explicit
contributors and copyright owners are not necessarily the most frequent com-
mitters. The concepts of code owners and code authors are related. We notice
that some approaches use similar techniques to determine the owner of a file.
For example, Corley et al. [57] extract all the commits on a file and add all
their authors to the owners of the file. Their strategy is identical to Meng et
al. [58]. In our study, we propose CIcaL to identify authors of source files,
whose results can be also useful to identify code owners.

Transfer learning in software engineering. The goal of transfer
learning is to make use of data from a source domain, which would corre-

24

spond to past data, in order to improve model predictions on a different,
but related dataset known as the target domain, which would correspond to
recent data [59]. Transfer learning can help deal with the changes in data dis-
tribution associated with concept drift in software engineering. For software
vulnerability detection, traditional machine learning-based approaches suf-
fers from the concept drift problem because the training data and test data
can from different projects or they differ in the types of vulnerability. There-
fore, some approaches [60, 61, 62] proposed to use domain adaptation to deal
with the concept drift problem. Garćıa et al. [63] applied transfer learning
to malware detection since the concept drift problem also exists in malware
detection. Duet al. [64] also applied transfer learning to cross-project bug
type prediction. Our positive results indicate that incremental learning can
improve the above approaches.

Incremental learning in software engineering. Researchers from
both cybersecurity domain and software engineering field proposed using
incremental learning to address the concept drift issue in malware detec-
tion [65, 66, 67]. Chen et al. [66] mentioned that machine learning methods
can detect malware with very high accuracy. However, these classifiers have
an Achilles heel, concept drift [68, 69]: they rapidly become out of date and
ineffective, due to the evolution of apps. Bhattacharya et al. [70] applied
incremental learning to improve triaging accuracy in bug triaging. Wang
et al. [71] also applied incremental learning to learn and process real-time
software data streams in software defect prediction. Weyssow et al. [72]
conducted an empirical study to demonstrate that incremental learning can
effectively mitigate catastrophic forgetting in pre-trained language models
across both API call and API usage prediction tasks. We are the first to
introduce incremental learning in identifying code authors.

Identifying human-authored and ChatGPT-generated code. The
ubiquitous adoption of Large Language Generation Models (LLMs) in pro-
gramming has underscored the importance of differentiating between human-
written code and code generated by intelligent models. Bukhari et al. [73]
attempt to use machine learning to distinguish between 28 student-authored
and 30 AI-generated solutions for a C-language programming assignment
involving singly-linked lists. Their approach leverages lexical and syntac-
tic features in conjunction with multiple machine-learning models, achieving
an accuracy rate of 92%. Li et al. [74] propose a discriminative feature set
in differentiating ChatGPT-generated code from human-authored code in
binary classification tasks. Bukhari et al. [75] construct a classifier for de-

25

tecting GPT-4 generated Python code, using XGBoost and a collection of
140 code-stylometry features. Current Approaches of distinguishing human-
written code and ChatGPT-generated code still follow the idea of traditional
code authorship identification, which is to extract or construct features to
capture the code style of human and ChatGPT, and then build machine
learning-based classifiers. The findings of our empirical study can be useful
to remind researchers to consider the impact of time and the class imbalance
problem when developing approaches to distinguish human-written code and
ChatGPT-generated code.

8. Conclusion

Authorship attribution of source code has applications in software en-
gineering tasks related to software maintenance, software quality analysis,
and plagiarism detection. While recent studies of authorship attribution
report high accuracy values, they ignore the temporal effect and class imbal-
ance problem. From the practical viewpoint, the temporal effect and class
imbalance are two inevitable problems of learning from source code. The
composition of these two phenomena will make learning from source code
challenging. In this paper, we have proposed CIcaL to solve the problem of
learning from an imbalanced data stream with the temporal effect. It creates
a base classifier for each chunk and weighs them by their performance tested
on the current chunk. Thus, a classifier trained recently or on a similar con-
cept as the current chunk will receive high weight in the ensemble to help
prediction. The evaluation results have shown that CIcaL performs better
and is more stable compared with the prior approaches.

Acknowledgement

We appreciate reviewers for their insightful comments. Hao Zhong is
the corresponding author. This work is sponsored by the National Natural
Science Foundation of China Nos. 62232003 and 62272295.

References

[1] A. Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Green-
stadt, A. Narayanan, When coding style survives compilation: De-
anonymizing programmers from executable binaries, in: NDSS, 2018.

26

[2] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yam-
aguchi, R. Greenstadt, De-anonymizing programmers via code stylom-
etry, in: Proc. USENIX Security, 2015, pp. 255–270.

[3] X. Yang, G. Xu, Q. Li, Y. Guo, M. Zhang, Authorship attribution of
source code by using back propagation neural network based on particle
swarm optimization, PloS one 12 (2017) e0187204.

[4] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, R. Greenstadt,
Source code authorship attribution using long short-term memory based
networks, in: Proc. ESORICS, 2017, pp. 65–82.

[5] M. Abuhamad, T. AbuHmed, A. Mohaisen, D. Nyang, Large-scale and
language-oblivious code authorship identification, in: Proc. CCS, 2018,
pp. 101–114.

[6] M. Abuhamad, T. Abuhmed, D. Nyang, D. Mohaisen, Multi-χ: Iden-
tifying multiple authors from source code files, in: Proc. PETS, 2020,
pp. 25–41.

[7] E. Bogomolov, V. Kovalenko, Y. Rebryk, A. Bacchelli, T. Bryksin, Au-
thorship attribution of source code: A language-agnostic approach and
applicability in software engineering, in: Proc. ESEC/FSE, 2021, pp.
932–944.

[8] J. Petrik, D. Chuda, The effect of time drift in source code authorship
attribution: Time drifting in source code-stylochronometry, in: Proc.
CompSysTech, 2021, pp. 87–92.

[9] Z. Li, G. Chen, C. Chen, Y. Zou, S. Xu, Ropgen: Towards robust code
authorship attribution via automatic coding style transformation, in:
Proc. ICSE, 2022, pp. 1906–1918.

[10] S. Gong, H. Zhong, A study on identifying code author from real devel-
opment, in: Proc. ESEC/FSE, 2022, pp. 1627–1631.

[11] Z. Li, S. Zhao, C. Chen, Q. Chen, Reducing the impact of time evolution
on source code authorship attribution via domain adaptation, ACM
Transactions on Software Engineering and Methodology (2024).

27

[12] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and trans-
fer learning upon training of a base perceptron b2, in: Proceedings of
Symposium Informatica, volume 3, 1976, pp. 121–126.

[13] S. Burrows, A. L. Uitdenbogerd, A. Turpin, Temporally robust software
features for authorship attribution, in: Proc. COMPSAC, volume 1,
IEEE, 2009, pp. 599–606.

[14] N. D. Hansen, C. Lioma, B. Larsen, S. Alstrup, Temporal context for
authorship attribution, in: Proc. IRFC, 2014, pp. 22–40.

[15] S. Gong, H. Zhong, Code authors hidden in file revision histories: An
empirical study, in: Proc. ICPC, 2021, pp. 71–82.

[16] R. Raina, A. Y. Ng, D. Koller, Constructing informative priors using
transfer learning, in: Proc. ICML, 2006, pp. 713–720.

[17] S. J. Pan, J. T. Kwok, Q. Yang, J. J. Pan, Adaptive localization in a
dynamic wifi environment through multi-view learning, in: Proc. AAAI,
volume 7, 2007, pp. 1108–1113.

[18] H. Ding, M. H. Samadzadeh, Extraction of java program fingerprints
for software authorship identification, Journal of Systems and Software
72 (2004) 49–57.

[19] A. Gepperth, B. Hammer, Incremental learning algorithms and applica-
tions, in: European symposium on artificial neural networks (ESANN),
2016.

[20] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions
on knowledge and data engineering 22 (2009) 1345–1359.

[21] Z. Qiao, Q. Pham, Z. Cao, H. H. Le, P. Suganthan, X. Jiang, R. Savitha,
Class-incremental learning for time series: Benchmark and evaluation,
arXiv preprint arXiv:2402.12035 (2024).

[22] K. W. Church, Word2vec, Natural Language Engineering 23 (2017)
155–162.

28

[23] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Elling-
wood, et al., Automated software vulnerability detection with machine
learning, arXiv preprint arXiv:1803.04497 (2018).

[24] M. White, M. Tufano, M. Martinez, M. Monperrus, D. Poshyvanyk,
Sorting and transforming program repair ingredients via deep learning
code similarities, in: Proc. SANER, 2019, pp. 479–490.

[25] D. Azcona, P. Arora, I.-H. Hsiao, A. Smeaton, user2code2vec: Embed-
dings for profiling students based on distributional representations of
source code, in: Proc. LAK, 2019, pp. 86–95.

[26] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors
with subword information, Transactions of the association for compu-
tational linguistics 5 (2017) 135–146.

[27] B. S. Raghuwanshi, S. Shukla, Class imbalance learning using under-
bagging based kernelized extreme learning machine, Neurocomputing
329 (2019) 172–187.

[28] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: An ensemble
method for drifting concepts, The Journal of Machine Learning Research
8 (2007) 2755–2790.

[29] D. Chicco, G. Jurman, The advantages of the matthews correlation
coefficient (mcc) over f1 score and accuracy in binary classification eval-
uation, BMC genomics 21 (2020) 1–13.

[30] J. Yao, M. Shepperd, Assessing software defection prediction perfor-
mance: Why using the matthews correlation coefficient matters, in:
Proc. EASE, 2020, pp. 120–129.

[31] M. Schuster, K. K. Paliwal, Bidirectional recurrent neural networks,
IEEE transactions on Signal Processing 45 (1997) 2673–2681.

[32] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems, O’Reilly Media, 2019.

29

[33] Q. McNemar, Note on the sampling error of the difference between
correlated proportions or percentages, Psychometrika 12 (1947) 153–
157.

[34] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, J. Van
De Weijer, Class-incremental learning: survey and performance evalu-
ation on image classification, IEEE Transactions on Pattern Analysis
and Machine Intelligence 45 (2022) 5513–5533.

[35] Z. Ke, B. Liu, Continual learning of natural language processing tasks:
A survey, arXiv preprint arXiv:2211.12701 (2022).

[36] C. Xia, W. Yin, Y. Feng, P. Yu, Incremental few-shot text classification
with multi-round new classes: Formulation, dataset and system, arXiv
preprint arXiv:2104.11882 (2021).

[37] J.-G. Zhang, K. Hashimoto, W. Liu, C.-S. Wu, Y. Wan, P. S. Yu,
R. Socher, C. Xiong, Discriminative nearest neighbor few-shot intent
detection by transferring natural language inference, arXiv preprint
arXiv:2010.13009 (2020).

[38] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: Learning dis-
tributed representations of code, Proc. PACMPL 3 (2019) 1–29.

[39] Z. Chen, M. Monperrus, The remarkable role of similarity in
redundancy-based program repair, arXiv preprint arXiv:1811.05703
(2018).

[40] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al., Codebert: A pre-trained model for programming
and natural languages, arXiv preprint arXiv:2002.08155 (2020).

[41] Y. Wang, W. Wang, S. Joty, S. C. Hoi, Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and gener-
ation, arXiv preprint arXiv:2109.00859 (2021).

[42] M. W. Godfrey, Understanding software artifact provenance, Science of
Computer Programming 97 (2015) 86–90.

[43] J. Davies, D. M. German, M. W. Godfrey, A. Hindle, Software bertillon-
age: Determining the provenance of software development artifacts, Em-
pirical Software Engineering 18 (2013) 1195–1237.

30

[44] G. Rousseau, R. Di Cosmo, S. Zacchiroli, Software provenance tracking
at the scale of public source code, Empirical Software Engineering 25
(2020) 2930–2959.

[45] W. Li, B. Yang, Y. Sun, S. Chen, Z. Song, L. Xiang, X. Wang,
C. Zhou, Towards tracing code provenance with code watermarking,
arXiv preprint arXiv:2305.12461 (2023).

[46] C. Liu, Z. Lin, J.-G. Lou, L. Wen, D. Zhang, Can neural clone detection
generalize to unseen functionalitiesƒ, in: Proc. ASE, 2021, pp. 617–629.

[47] A. Eghbali, M. Pradel, Crystalbleu: precisely and efficiently measuring
the similarity of code, in: Proc. ASE, 2022, pp. 1–12.

[48] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes, Sourcerercc:
Scaling code clone detection to big-code, in: Proc. ICSE, 2016, pp.
1157–1168.

[49] W. Ou, S. H. Ding, Y. Tian, L. Song, Scs-gan: Learning functionality-
agnostic stylometric representations for source code authorship verifica-
tion, IEEE Transactions on Software Engineering 49 (2022) 1426–1442.

[50] Q. Liu, S. Ji, C. Liu, C. Wu, A practical black-box attack on source code
authorship identification classifiers, IEEE Transactions on Information
Forensics and Security 16 (2021) 3620–3633.

[51] L. P. Hattori, M. Lanza, R. Robbes, Refining code ownership with
synchronous changes, Empirical Software Engineering 17 (2012) 467–
499.

[52] M. Greiler, K. Herzig, J. Czerwonka, Code ownership and software
quality: a replication study, in: Proc. MSR, 2015, pp. 2–12.

[53] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, A. De Lucia,
Using code ownership to improve ir-based traceability link recovery, in:
Proc. ICPC, 2013, pp. 123–132.

[54] P. Thongtanunam, S. McIntosh, A. E. Hassan, H. Iida, Revisiting code
ownership and its relationship with software quality in the scope of mod-
ern code review, in: Proc. ICSE, 2016, pp. 1039–1050.

31

[55] C. Bird, N. Nagappan, B. Murphy, H. Gall, P. Devanbu, Don’t touch
my code! examining the effects of ownership on software quality, in:
Proc. ESEC/FSE, 2011, pp. 4–14.

[56] Y. Kamei, S. Matsumoto, A. Monden, K. I. Matsumoto, B. Adams, A. E.
Hassan, Revisiting common bug prediction findings using effort-aware
models, in: Proc. ICSM, 2010.

[57] C. S. Corley, E. A. Kammer, N. A. Kraft, Modeling the ownership of
source code topics, in: Proc. ICPC, 2012, pp. 173–182.

[58] X. Meng, B. P. Miller, K.-S. Jun, Identifying multiple authors in a
binary program, in: Proc. ESORICS, 2017, pp. 286–304.

[59] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions
on knowledge and data engineering 22 (2010) 1345–1359.

[60] V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu,
D. Phung, Deep domain adaptation for vulnerable code function iden-
tification, in: Proc. IJCNN, 2019, pp. 1–8.

[61] V. Nguyen, T. Le, O. de Vel, P. Montague, J. Grundy, D. Phung, Dual-
component deep domain adaptation: A new approach for cross project
software vulnerability detection, in: Proc. PAKDD, 2020, pp. 699–711.

[62] S. Liu, G. Lin, L. Qu, J. Zhang, O. De Vel, P. Montague, Y. Xiang,
Cd-vuld: Cross-domain vulnerability discovery based on deep domain
adaptation, IEEE Transactions on Dependable and Secure Computing
19 (2020) 438–451.

[63] D. E. Garćıa, N. DeCastro-Garćıa, A. L. M. Castañeda, An effectiveness
analysis of transfer learning for the concept drift problem in malware
detection, Expert Systems with Applications 212 (2023) 118724.

[64] X. Du, Z. Zhou, B. Yin, G. Xiao, Cross-project bug type prediction
based on transfer learning, Software Quality Journal 28 (2020) 39–57.

[65] Q. Qiang, M. Cheng, Y. Hu, Y. Zhou, J. Sun, Y. Ding, Z. Qi, F. Jiao, An
incremental malware classification approach based on few-shot learning,
in: Proc. ICC, 2022, pp. 2682–2687.

32

[66] Y. Chen, Z. Ding, D. Wagner, Continuous learning for android malware
detection, in: Proc. USENIX Security, 2023, pp. 1127–1144.

[67] A. Narayanan, L. Yang, L. Chen, L. Jinliang, Adaptive and scalable
android malware detection through online learning, in: Proc. IJCNN,
2016, pp. 2484–2491.

[68] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing,
G. Wang, {CADE}: Detecting and explaining concept drift samples
for security applications, in: Proc. USENIX Security, 2021, pp. 2327–
2344.

[69] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouret-
dinov, L. Cavallaro, Transcend: Detecting concept drift in malware
classification models, in: Proc. USENIX Security, 2017, pp. 625–642.

[70] P. Bhattacharya, I. Neamtiu, Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging, in: Proc. ICSM,
2010, pp. 1–10.

[71] S. Wang, Y. Li, W. Mi, Y. Liu, Software defect prediction incremental
model using ensemble learning, International Journal of Performability
Engineering 16 (2020) 1771.

[72] M. Weyssow, X. Zhou, K. Kim, D. Lo, H. Sahraoui, On the usage of
continual learning for out-of-distribution generalization in pre-trained
language models of code, in: Proc. ESEC/FSE, 2023, pp. 1470–1482.

[73] S. Bukhari, B. Tan, L. De Carli, Distinguishing ai-and human-generated
code: a case study, in: Proc. SCORED, 2023, pp. 17–25.

[74] K. Li, S. Hong, C. Fu, Y. Zhang, M. Liu, Discriminating human-
authored from chatgpt-generated code via discernable feature analysis,
in: Proc. ISSREW, 2023, pp. 120–127.

[75] O. J. Idialu, N. S. Mathews, R. Maipradit, J. M. Atlee, M. Nagappan,
Whodunit: Classifying code as human authored or gpt-4 generated-a
case study on codechef problems, in: Proc. MSR, 2024, pp. 394–406.

33

	Introduction
	Preliminary
	Motivating Example
	Approach
	Code Extractor
	Learner
	Author Predictor

	Evaluation
	Setting
	Benchmark
	Measures
	Statistical hypothesis testing

	RQ1. Comparison with baselines
	Baseline
	Training and testing process
	Result

	RQ2. The Impact of Imbalanced Data
	Setup
	Result

	RQ3. The Impact of Representation
	Setup
	Result

	Limitations and Future Work
	Related Work
	Conclusion

