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Abstract—Mobile edge computing (MEC) offers a promising5
technology that deploys computing resources closer to mobile6
devices for improving performance. Most of the existing studies7
support on-demand remote execution of the computing tasks in8
applications through program transformation, but they commonly9
assume that mobile devices merely resort to a single server for10
computation offloading, which cannot make full use of the scattered11
and changeable computing resources. Thus, for object-oriented ap-12
plications, we propose a novel approach, called FUNOff, to support13
the dynamic offloading of applications in MEC at the function14
granularity. First, we extract a call tree via code analysis and locate15
the function invocations that are suitable for offloading. Next, we16
refactor the code of related object functions according to a specific17
program structure. Finally, we make offloading decisions referring18
to the context at runtime and send function invocations to multiple19
remote servers for execution. We evaluate the proposed FUNOff20
on two real-world applications. The results show that, compared21
with other approaches, FUNOff better supports the computation22
offloading of object-oriented applications in MEC, which reduces23
the response time by 10.7%-58.2%.24

Index Terms—Mobile edge computing, computation offloading,25
code analysis, object-oriented application, software adaptation.26

I. INTRODUCTION27

W ith the rise of intelligent technologies, massive28

computation-intensive applications (e.g, autonomous29

driving [1], image recognition [2], and augmented reality [3])30

have been developed to improve the quality of people’s life.31

However, most existing smart devices (e.g., wearable de-32

vices [4], vehicles [5], and UAVs [6]) are unable to handle33

computation-intensive tasks in a short time due to the constraints34
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Fig. 1. Mobile edge computing (MEC) architecture.

on their processing power, memory capacity, and battery capac- 35

ity [7]. 36

Computation offloading is an effective way to resolve resource 37

constraints on mobile devices [8]. In the last decade, one feasi- 38

ble way is to offload computation-intensive tasks from mobile 39

devices to a cloud server, aiming to improve the performance 40

of mobile applications [9], [10], [11]. This paradigm is known 41

as mobile cloud computing (MCC). Although MCC elevates 42

user experience, higher network delay can happen, if the cloud 43

server is remote [12]. Meanwhile, the massive data transmission 44

between the cloud server and mobile devices increases the traffic 45

load of core networks [13]. When there are many mobile devices, 46

the performance of MCC may be seriously affected, especially 47

for latency-sensitive applications. To further improve MCC, 48

a new paradigm, called mobile edge computing (MEC) has 49

emerged. Fig. 1 depicts a typical MEC architecture: there is a 50

three-tier computing architecture consisting of mobile devices, 51

edge nodes, and the cloud [14], [15]. By pushing the computing 52

resources from the centralized cloud to the decentralized edges 53

near the data source (e.g., mobile devices), MEC reduces the 54

influx of data on the backbone [16], [17]. Therefore, MEC has 55

been regarded as a more effective way to reduce the service delay 56

than MCC does. 57

Due to the geographical distribution of MEC servers and the 58

mobility of mobile devices, the runtime context in MEC is highly 59

complex and dynamic [18], [19]. Although the prior studies [20], 60

[21], [22] can be extended to the scenario of MEC, they lack 61

enough effectiveness, since they only divide an application into 62
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two parts and deploy them on a mobile device and a remote63

server. In our prior work, we propose an adaptive offloading64

architecture, called Androidoff [23], [24]. Androidoff is able65

to offload applications among the local device, mobile edges,66

and the cloud dynamically, but it still reveals the following67

limitations:68

(1) There is still improvement space for the performance of69

Androidoff. The Androidoff offloads applications at the granu-70

larity of objects, but it would be more flexible by adopting finer71

granularity. For example, an object owns two methods, which72

intend to be offloaded to the edge and the cloud, respectively.73

However, since these two methods are from the same object,74

they can only be offloaded to the same location (i.e., the edge or75

the cloud).76

(2) When users move to a new location, Androidoff ensures77

the normal operation of applications by accessing the copied ob-78

jects of the cloud server. If the new environment is not connected79

to the cloud server, some information may be lost, which causes80

crashes. Meanwhile, the time of restarting applications is often81

unacceptable.82

Although it is beneficial to offload applications at a finer83

granularity, it is challenging to decompose applications. Most84

applications are monolithic and have a high degree of internal85

coupling [25]. Moreover, another challenge is to avoid loss of86

information when users move to new scenarios. Mobile devices87

need to maintain all the state information of the objects to ensure88

that the application can keep executing normally.89

Recently, the Function as a Service (FaaS) programming90

model has been widely adopted with the emergence of serverless91

cloud computing [26], [27]. In FaaS, an application is split into92

short-lived stateless functions that can be executed by different93

computing nodes [28], which is a fine-grained computation94

offloading. The basic idea of FaaS can resolve the problem95

of information loss caused by a finer granularity. However, to96

realize this idea, there are two key challenges: (1) The execution97

of a function in an object-oriented (OO) application depends on98

the states of multiple objects. (2) To adapt to the highly complex99

and dynamic runtime context of MEC, an algorithm shall make100

quick offloading decisions.101

To address the problems of the state-of-the-art, we propose a102

novel offloading mechanism, called FUNOff. The major contri-103

butions of this paper are as follows:104
� A novel offloading mechanism, called FUNOff, that sup-105

ports the offloading of applications at the granularity of106

functions. The FUNOff builds a call tree, and discovers107

function invocations that are suitable for offloading. To108

resolve the state dependencies of methods, the FUNOff109

transforms functions into stateless ones based on the code110

analysis results.111
� An online decision traversal strategy that uses the prop-112

erties of the call tree and the tendency of computation113

offloading to synthesize offloading schemes.114
� Extensive evaluation results on two real-world applica-115

tions. We evaluate FUNOff on License Plate Recogni-116

tion Application (LPRA) and Target Detection Application117

(TDA). Compared with the existing approaches [9], [23],118

[24], the results show that FUNOff reduces the response119

time of LPRA and TDA by 10.7%-45.7% and 14.5%- 120

58.2%, respectively. 121

II. RELATED WORK 122

A. Offloading Mechanism 123

Computation offloading is a way to resolve resource con- 124

straints on mobile devices. The state-of-the-art offloading mech- 125

anism can offload applications by the granularity of program 126

fragments [11], methods [9], [20], [21], classes [29], layers [22], 127

and objects [23], [24]. 128

Cuckoo [11] is a computation offloading framework with the 129

granularity of program fragments. It asks developers to comply 130

with a given programming paradigm to refactor the application 131

so that certain parts of it can be offloaded to the cloud server. 132

DPartner [29] can offload classes, and it uses a proxy mechanism 133

to access class instances. Further, it calculates the coupling 134

of classes and deploys them in two parts on a mobile device 135

or a remote cloud server. Although the above approaches can 136

effectively support computation offloading of applications in 137

MCC, they are not designed for MEC. MAUI [9] is a computa- 138

tion offloading framework for C# applications, which offloads 139

applications at the granularity of methods. The programmers 140

only need to mark remoteable methods, and the application can 141

be restructured automatically. Then the framework will decide 142

which methods should be offloaded to the remote server at 143

runtime. ULOOF [20] also works on the granularity of meth- 144

ods, but it targets the offloading problem for Java applications. 145

Dandelion [21] is a unified code offloading system for wearable 146

computing that supports multi-process offloading. It can generi- 147

cally offload tasks to a cloud, a cloudlet, or nearby smart devices. 148

DeepWear [22] strategically offloads DL tasks from a wearable 149

device to its paired handheld device. It splits a DL model into two 150

sub-models that are first executed on the wearable and then on the 151

handheld. However, the above studies only divide the application 152

into two parts and deploy them on a mobile device and a remote 153

server, respectively. This paradigm cannot support the dynamic 154

offloading among the device, mobile edges, and the cloud [30], 155

[31], [32], which limits performance improvement. To address 156

this issue, AndroidOff [23], [24] proposed an adaptive offloading 157

framework that supports computation offloading at the object 158

granularity in MEC. It enables offloading applications among 159

the local device, mobile edges, and the cloud dynamically. 160

However, the stateful nature of the methods makes AndroidOff 161

inapplicable in some scenarios. 162

B. Offloading Strategy 163

Computation offloading needs to determine which parts of an 164

application shall be offloaded and to which compute nodes, i.e., 165

the decision of an offloading scheme. A qualified offloading 166

scheme needs to balance the impact of various factors, such 167

as computing performance and network environment, around 168

the offloading goal. In recent years, researchers have started to 169

explore the intelligent scheduling of computation offloading in 170

MCC or MEC. 171

drzho
删划线

drzho
插入号
has



IE
EE P

ro
of

CHEN et al.: FUNOff: OFFLOADING APPLICATIONS AT FUNCTION GRANULARITY FOR MOBILE EDGE COMPUTING 3

Fig. 2. The sample scenario (a) Process of a license plate recognition appli-
cation. (b) Context of the drone in the college.

Altamimi et al. [33] evaluated the communication energy172

consumption of offloading computing tasks to cloud servers173

and established a high-precision energy consumption estimation174

model without the requirement of complete input parameters. It175

can decide whether computing tasks shall be offloaded based on176

this model rapidly. Elgazzar et al. [34] proposed a framework177

for collaborative offloading services to provide computation178

offloading services for mobile devices based on the system179

network, resource status, and energy consumption constraints.180

Zhou et al. [35] proposed a context-aware offloading decision181

algorithm to provide offloading decisions at runtime, called182

mCloud, which selects a wireless medium and appropriate cloud183

resources for offloading. The works [33], [34], [35] aim at intelli-184

gent scheduling in MCC, and some works [30], [36] are proposed185

for MEC. Cheng et al. [30] proposed a three-layer computation186

offloading framework composed of wearable devices, mobile187

devices, and edge nodes. They introduced genetic algorithms to188

increase the task throughput of wearable devices in MEC. Wu189

et al. [36] proposed a task partition algorithm suitable for the190

computation offloading of graph applications. They adopted an191

improved bipartite graph algorithm to divide the computing tasks192

into local and remote ones. However, the above approaches make193

offloading decisions based on the high-level abstract model of a194

program, rather than a real application.195

III. MOTIVATION196

MAUI [9] is a well-known computation offloading frame-197

work, which supports the dynamic offloading of object-oriented198

programs at method granularity in MCC. It allows annotating199

which methods can be offloaded beforehand and deciding the of-200

floading scheme at runtime. AndroidOff [23], [24] is an adaptive201

offloading framework for MEC. It is designed to handle object-202

oriented programs and offload them at the object granularity.203

In this section, we use a scene as shown in Fig. 2 to illustrate204

how MAUI [9], AndroidOff, and FUNOff work. In this scene,205

the drone cruises around the college, and when it detects illegal 206

parking, the LPRA in the drone will be operated to identify the 207

car’s plate number from the video stream. Fig. 2(a) shows the 208

process of LPRA, including shooting, framing, preprocessing, 209

ocr processing, and information storing. Each process contains 210

several functions, as shown in Fig. 7(a). These tasks require 211

different computation power. For example, ocr processing is a 212

computation-intensive task, and it is more effective to offload 213

it to a remote server; meanwhile, framing exhibits low com- 214

putation complexity. The data traffic between tasks is another 215

influencing factor. For example, the data traffic between shooting 216

and framing is large, while between preprocessing and ocr 217

processing is marginal. It is preferred to execute two adjacent 218

tasks with high data traffic on the same device. Fig. 2(b) shows 219

the context of the drone when it cruises around the college. 220

There are three available remote servers (Cloud, Edge1, and 221

Edge2) in different locations. Edge1 is located in the teaching 222

building and the garden; Edge2 can be accessed from the garden 223

and the laboratory; Cloud can be accessed from other locations 224

besides the garden. Notes that the network environment and the 225

LPRA are the same as the setting in Section V. To improve 226

the performance, when the drone stays in different locations, it 227

needs to determine where each computation task is executed 228

and then offload each task to its corresponding server in a 229

real-time manner. When the drone moves to a different location, 230

its application must be smoothly switched between servers. 231

We discuss two offloading cases: 232

Case 1: When the drone stays in a location, it must be able to 233

utilize the scattered computing resources around the location. 234

For example, the drone can use a cloud server and an edge 235

server to improve the performance of LPRA in the Laboratory. In 236

this location, FUNOff offloads computation-intensive functions 237

such as RecInEachChar.getHZ() and Oritenation.math() to the 238

cloud or edge by comparing the reduced execution time with 239

the increased network latency. If functions implement sim- 240

ple tasks, they are executed locally. As for MAUI only uses 241

a single remote server for computation offloading due to its 242

poor scalability. It cannot offload different methods to multiple 243

different remote servers to further enhance performance, so 244

RecInEachChar.getHZ() and Oritenation.math() are both of- 245

floaded to the edge server. As a result, MAUI can only reduce 246

the response time by 34%, while FUNOff can reduce it by 46%. 247

According to our offloading scheme, getHZ() and GetRegion() 248

are executed on the cloud and drone, respectively. Androidoff 249

is offloaded at object granularity, getHZ() and GetRegion() can 250

only be offloaded to the cloud since they are both methods of 251

object RecInEachChar. 252

Case 2: When the drone moves between different locations, 253

it shall switch smoothly. For example, suppose that the drone 254

moves from the teaching building to the garden. In the beginning, 255

the drone executes the LPRA in the teaching building. It offloads 256

the function RecInEachChar.getHZ() to Cloud according to our 257

offloading scheme. During the application execution, the drone 258

moves to the garden, causing the application to disconnect from 259

Cloud. Since both FUNOff and MAUI save the information of 260

the object RecInEachChar in the drone, they can ensure the 261

normal execution of RecInEachChar.getHZ() in the new context. 262
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Fig. 3. The overview of FUNOff.

As Androidoff takes the object as the minimum offloading unit,263

the state information of the object is saved on the corresponding264

execution location. The application will crash when the drone265

moves from the teaching building to the garden. The information266

of the object RecInEachChar is not saved on the drone, and267

there is no connection to the Cloud to get the information. As a268

result, the crash caused 20s delay in restarting the application.269

In order to make offloading smoother, the generation time of270

offloading schemes needs to be reduced. FUNOff can reduce it271

by determining the appropriate cut-point functions in advance.272

Compared with the above approaches, FUNOff has the fol-273

lowing main improvements: (1) it can support adaptive offload-274

ing at function granularity in MEC; (2) The object methods275

are translated into stateless functions to avoid the loss of state276

information caused by movement. (3) To support offloading at277

runtime, the set of cut-point functions suitable for offloading is278

automatically determined in advance to reduce the generation279

time of the offloading scheme.280

IV. APPROACH281

Fig. 3 shows the overview of FUNOff. The FUNOff reuses282

the estimation model of AndroidOff proposed in our previous283

work [23]. This model predicts the execution costs (i.e., execu-284

tion time) of functions. Based on this model, FUNOff further285

introduces a code analyzer (Section IV-A), an offloading mech-286

anism (Section IV-B), and an offloading strategy (Section IV-C).287

These components interact with an MEC environment.288

More specifically, Algorithm 1 gives the details. It takes the289

source code of an application and an MEC environment as its290

input. Here, the MEC environment is modeled as a graph, in291

which nodes represent computing nodes (including the mobile292

device and remote servers with different computation capabili-293

ties), and edges represent the communication link between two294

computing nodes (e.g., the data transmission rate and round-trip295

time). The output of Algorithm 1 is the offloading scheme, which296

includes the execution location of each function in the call tree.297

Algorithm 1 includes the following three procedures:298

Procedure 1 (Section IV-A): We implement a code analyzer to299

extract suitable function invocations. First, it builds a call tree.300

In this tree, the entry is the main() function; each node represents301

a function; and a directed edge between nodes represents a302

TABLE I
SYMBOL AND DESCRIPTION

function call between two functions (Line 2). Based on the 303

computation complexity and data transmission of each function, 304

it extracts function invocations that are suitable for offloading 305

(Line 3). 306

Procedure 2 (Section IV-B): We implement an offloading 307

mechanism to enable the remote calls of functions. For the func- 308

tions extracted in Procedure 1, Line 6 extracts their signatures, 309

and Lines 7 to 11 construct wrappers and transmitters for them 310

according to our program structure. 311

Procedure 3 (Section IV-C): Based on the results of the above 312

procedures, we design an offloading strategy to determine the 313

offloading scheme according to the context automatically. Dif- 314

ferent parts of the application can be executed on mobile devices, 315

edge servers, or cloud servers. With this offloading strategy, we 316

implemented an offloading decision algorithm (Algorithm 4). 317

For an application, this algorithm uses the optimization function 318

to calculate the response time of each candidate offloading 319

scheme and selects the scheme with the minimum value. 320

Table I lists the major symbols used in this paper. 321

A. Code Analyzer 322

As only a few function calls are suitable for offloading, we 323

employ a preprocessing step, i.e., a program analysis technique 324

for computing offloading. We extract a call tree through static 325

analysis (Section IV-A1). After that, we identify the function 326

invocations suitable for offloading (Section IV-A2) to reduce 327

the additional execution cost of the offloading mechanism and 328

the time cost caused by the decision of offloading schemes. 329

1) Extracting the Call Tree: FUNOff builds a call tree for an 330

object-oriented application. The definition of the call tree is as 331

follows: 332

Definition 1. Treefr = (F,R) denotes a call tree beginning 333

at fr, whereF = {f1, f2, . . ., fn} is the set of function call sites, 334
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Algorithm 1: The Overview of FUNOff.
Input: The source code of an application code; A context
environment Gc = (N,E)

Output: the offloading scheme
(DEP )optimal = {dep(f1), . . . , dep(fn)} and the
response time (Tresponse)optimal

1: procedure 1
2: Treefmain

= (F,R)← Algorithm 2(code)
3: divFunction = {f1, f2, . . ., fp} ← Algorithm

3(Treefmain
)

4: end procedure
5: procedure 2
6: organize divFunction as DF
7: for each dfi ∈ DF do
8: Parami ← collect external parameters of dfi
9: dfi_Wrapper ← refactor dfi with Parami

10: dfi_Transmitter ← refactor dfi
11: end for
12: end procedure
13: procedure 3
14: 〈(DEP )optimal, (Tresponse)optimal〉 ← Algorithm

4(Treefmain
, Gc, Sinvoke)

15: end procedure

Algorithm 2: Extracting the Call Tree.
Input: A fmain function whose statements are
{u1

main, . . . , u
n
main}

Output: A call tree Treefmain
= (F,R)

1: F ← F + fmain, R← ∅
2: function getTreefa, Ua

3: for each ui
a ∈ Ua do

4: keywords← Soot(ui
a)

5: if ∃′′invoke′′ ∈ keywords then
6: fSignature← getfunction(ui

a)
7: callSeq ← fa.callSeq + fSignature
8: fs ← 〈fSignature, callSeq〉
9: Us ← getUnits(fSignature)

10: F ← F + fs
11: if 〈fa, fs〉 ∈ R.key then
12: ++ rfa−fs
13: else
14: rfa−fs ← 1
15: R← R+ rfa−fs
16: end if
17: getTree(fs, Us)
18: end if
19: end for
20: end Function

and R is the set of function call relations. Each edge ri−j ∈ R335

represents a function call from fi to fj , and its weight represents336

the call times of the function call.337

Definition 2. fi = 〈fSignaturei, callSeqi〉, fi ∈ F :338

fSignaturei denotes function signature of fi, and callSeqi339

TABLE II
FACTORS FOR IDENTIFYING CUT-POINT FUNCTIONS

denotes a function call path from the main() function (denoted 340

as fmain, the same below) to fi. 341

FUNOff uses Soot1 to build call trees, and Algorithm 2 shows 342

its details. It takes fmain as the entry of the application, and 343

extracts the call tree beginning at fmain. We get a hash map to 344

record R, whose keys are stored in the form of 〈fi, fj〉, and 345

its corresponding value means the times of the call from fi 346

to fj . The inputs of Algorithm 2 are the entry function fmain 347

and its soot statement set Umain, each ui
main denotes the ith 348

soot statement of Umain. Lines 3 to 20 extract the call tree 349

recursively via the function getTree(), its parameters fa denotes 350

the function to be analyzed, andUa denotes fa’s soot statements. 351

In particular, Line 4 obtains the soot keywords inui
a, which is the 352

instructions defined in Soot. For example, the invoke keyword 353

indicates a function call statement. The complete keywords are 354

defined in the Soot manual1. Therefore, if ui
a contains a keyword 355

that indicates a call to function fs, Lines 6 to 10 update F , that 356

is, add fs to set F . Lines 11 to 16 update R, that is, record 357

the function call from fa to fs and update its corresponding 358

value. Line 17 recursively calls the function getTree() with fs 359

and its statement set. When the procedure is done, the call tree 360

is obtained. 361

2) Extracting Cut-Point Functions: According to the call tree 362

extracted in Section IV-A1, FUNOff further identifies function 363

invocations that are suitable for offloading. For the convenience 364

of description, we call such function invocations cut-point func- 365

tions. Table II shows the factors that are collected to identify 366

cut-point functions. We estimate the performance ratio between 367

the computing nodes according to the ratio of the time required 368

to process a set of identical functions on these nodes. The 369

estimation model of AndroidOff [23] is able to predict the 370

execution costs of all functions. Following its definition, we 371

useEinvokefinq
= 〈Etime,Edatasize〉 to denote the execution 372

cost of function fi at the computing node nq , where Etime 373

denotes the execution time, and Edatasize denotes the amount 374

of data transmission. 375

For each branch path with the current node as the starting 376

node, get all nodes on the path from the current node to the first 377

branch node, and FUNOff chooses the cutpoint functions from 378

them. 379

In particular, Treefcur
denotes the subtree rooted at the 380

function fcur of the call tree, andTTreefcur denotes the response 381

time of its local execution. TTreefcur (fi) denotes the response 382

1https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-
develop/jdoc/
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time of Treefcur
on the fi function call and is calculated as the383

(1). If fi is identified as a cut-point function, all the functions in384

the subtree rooted at fi can be executed on a remote computing385

node. The response time consists of the local execution time, the386

remote execution time, and the data transmission time.387

Eq. (2) denotes the local execution time, which is calculated388

as the difference between the total execution time of fcur and389

that of fi on the local computing node. In particular, rfi.caller−fi390

donates the call times of fi in a function call to fcur, it calculates391

as the product of weight on the path from fcur to fi.392

Eq. (3) denotes the remote execution time, which is quantified393

by the execution cost on a remote computing node over that of394

a local one.395

Eq. (4) denotes the total data transmission time. It consists396

of the transmission time and the round-trip time. In particular,397

the transmission time is the amount of data transmission of the398

cut-point function divided by the transmission rate between the399

remote computing node and the local computing node, and the400

round-trip time between two computing nodes is represented as401

rtt.402

FUNOff extracts cut-point functions based on the above403

rules and equations. Algorithm 3 describes the details, where404

the input is the call tree Treefcur
of the program, and the405

output is the set of cut-point functions divFunction. Line 1406

sets the divFunction to the empty set. Then, Line 2 takes407

fmain as the current function fcur of the call tree and uses408

the GetDivFunction() function to get the divFunction re-409

cursively. Lines 3 to 23 of Algorithm 3 describe the details410

of the GetDivfunction(). Line 4 checks whether fcur has a411

successor. If it has, Lines 5 to 21 do the following operations412

on each branch: Lines 7 to 8 add the functions on this branch413

path to the set P in order until the first branch node is found. If414

it exists, line 10 takes it as the current function and recursively415

calls GetDivFunction(). Lines 14 to 15 iterate through the416

functions in P in turn until a function fi is found, so that417

the response time of Treefcur
on the fi function call is less418

than the time of local execution. After that, lines 16 to 17 add419

fi to divFunction, and call the function GetDivFunction()420

recursively. When Algorithm 3 is done, a set of all cut-point421

functions is obtained.422

Under the MEC environments with various computational423

resources and network connections, there might be different424

numbers of functions that are suitable to be offloaded. Basically,425

the offloading tends to happen when the higher performance ratio426

(λ) between servers and IoT devices and faster data transmis-427

sion rate (v and rtt). In practical applications, we select the428

Algorithm 3: Extracting Cut-Point Functions.

Input: A call tree Treefmain
= (F,R)

Output: A set of cut-point functions
divFunction = {f1, f2, . . ., fn}

1: divFunction← ∅
2: getDivfunction(fmain)
3: function getDivfunctionfcur
4: if post(fcur) 	= ∅ then
5: for each branch path do
6: P ← ∅
7: for each fi in this branch path except fcur do
8: P ← P ∪ fi
9: if fi is a branch node then

10: getDivfunction(fi)
11: break
12: end if
13: end for
14: for each fi in P do
15: if TTreefcur (fi) < TTreefcur then
16: divFunction← divFunction ∪ fi
17: getDivfunction(fi)
18: break
19: end if
20: end for
21: end for
22: end if
23: end Function

performance ratio, network transmission rate, and round-trip 429

time between the remote and the local computing nodes of the 430

optimal offloading environment in the current scenario as λ, 431

v, and rtt to avoid missing the necessary cut-point functions. 432

With these factors, the optimization function extracts cut-point 433

functions that are suitable for offloading and deploying them to 434

different computing nodes. 435

In an offloading problem, the decision time of offloading 436

strategy is linearly positive to the number of functions in an 437

application, and finding the cut-point functions in advance can 438

effectively reduce the decision time. 439

B. Offloading Mechanism 440

A standalone application typically is designed to execute on 441

only a mobile device. To enable its offloading, FUNOff modifies 442

TTreefcur (fi) = Te
Treefcur (fi) [local] + Te

Treefcur (fi) [remote] + Td
Treefcur (fi) (1)

Te
Treefcur (fi) [local] = Einvokefcur

ncur
.Etime− Einvokefincur

.Etime ∗ rfi.caller−fi (2)

Te
Treefcur (fi) [remote] =

Einvokefincur
.Etime ∗ rfi.caller−fi

λ
(3)

Td
Treefcur (fi) =

(
Einvokefincur

.Edatasize

v
+ rtt

)
∗ rfi.caller−fi . (4)
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Fig. 4. Target program structure.

Fig. 5. Example of original function and function wrapper, where c and dwere
external variables (a) The source code. (b) The target code of function wrapper.

the source files of applications. To keep program behaviors un-443

changed, FUNOff builds wrappers for stateless functions. When444

offloading, all the objects of the application are maintained445

locally, and parts of function calls are executed remotely; thus,446

the application runs normally when the network connection is447

changing. This section introduces our target program structure448

that supports computation offloading and its refactoring mech-449

anism (Section IV-B1), mainly including two parts: function450

wrappers (Section IV-B2) and transmitters (Section IV-B3).451

1) Target Program Structure: Our target program452

structure is composed of two elements: function wrapper453

Function_T_Wrapper and function transmitter Func-454

tion_T_Transmitter, as shown in Fig. 4. In this structure,455

an object is deployed locally, and only its function wrappers456

are offloaded to a remote server. To enable executing function457

wrappers on remote servers, we found their external variables458

via static analysis and modified them to be passed in by459

parameters and returned by return values. Here, variables460

external to the function are those accessed within it but declared461

outside. For example, as shown in Fig. 5, c and d are the external462

variables of the original function.463

The translation to target programs has three steps:464

1) Converting function calls from Function_I to Function_T 465

into indirect calls via Function_T_Transmitter. 466

2) Transforming the inputs and the outputs of Function_T to 467

those of Function_T_Wrapper. As transformed functions 468

don’t access external variables, they are stateless. 469

3) Generating proxy functions Function_T_Transmitter for 470

Function_T. Function_T_Transmitter has the same func- 471

tion signature as Function_T, and it is responsible for de- 472

termining the execution location of Function_T_Wrapper. 473

After the above translation, Function_I calls Func- 474

tion_T_Transmitter locally, and Function_T_Transmitter de- 475

cides whether to call Function_T_Wrapper locally or remotely 476

according to the offloading decision scheme. The call sites of 477

Function_I to Function_T are unchanged. We next introduce 478

the process of generating function wrappers (Section IV-B2) 479

and function transmitters (Section IV-B3). 480

2) Function Wrapper: FUNOff generates function wrappers 481

with three steps: 482

1) Modifying the parameters and return values of a function. 483

As shown in Line 1 of Fig. 5(a) and (b), the parameter 484

params is added to the original function signature, and 485

it records the external variables of the original function. 486

Through this parameter, external variables are passed into 487

the modified function. In addition, the function in Fig. 5(b) 488

is added to return the values of params, so the changes 489

on external variables can be returned to function callers. 490

2) Modifying all statements in the function that access exter- 491

nal variables. As shown in Line 2 of Fig. 5(a), c and d are 492

two external variables, and as shown in Line 2 of Fig. 5(b), 493

the two external variables are replaced with params.c and 494

params.d. After the modification, the modified function 495

does not access external variables. 496

3) Modifying all return statements for the function. The 497

return statement of Fig. 5(a) is modified to Lines 3 to 6 498

of Fig. 5(b). In particular, params is added to the return 499

result, so both the changes in external variables and the 500

return value are returned to function callers. 501

3) Function Transmitter: A function transmitter is the proxy 502

of a function, which is responsible for handling control mes- 503

sages and data synchronization. The construction of the function 504

transmitter includes the following steps: 505

1) Generating a function whose name, parameters, and return 506

values are identical to the original function, as shown in 507

Line 1 of Fig. 6(b). 508

2) Adding a statement to record the current function call. 509

FUNOff uses a global variable, called seq, to represent 510

the position of the current function call in the call tree. As 511

shown in Line 2 of Fig. 6(b), when calling each a function, 512

FUNOff adds its signature to seq to record the position of 513

a new function call in the call tree, and as shown in Line 514

15 of Fig. 6(b), it removes the function signature from seq 515

when exiting it. 516

3) Adding a statement to handle additional variables. As 517

shown in Lines 3 to 5 of Fig. 6(b), a variable of type 518

Params are declared and initialized with the information 519

of local external variables. 520
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Fig. 6. Example of original function and function transmitter, where c and
d were external variables (a) The source code. (b) The target code of function
transmitter.

4) Adding a statement for the local or remote call to the521

function wrapper. As shown in Lines 6 to 12 of Fig. 6(b),522

FUNOff checks the execution location of the current func-523

tion call in our offloading scheme (Section IV-C1) with524

seq and calls the local function wrapper or the remote525

one. In particular, if a function wrapper is called remotely,526

its parameters and seq are sent to the agent on the remote527

node, and the remote agent identifies the current function528

call through seq and invokes it.529

5) Adding the statement to receive the result returned by the530

function wrapper. As shown in Lines 13 to 14 of Fig. 6(b),531

the local external variables are updated with the result data532

to ensure the consistency of program states. In addition,533

the latest return value is returned to its caller, as shown in534

Line 16 of Fig. 6(b).535

C. Offloading Strategy536

In this section, we introduce our offloading strategy. It is537

designed to minimize the overall offloading cost. We next present538

the factors that affect the offloading decision (Section IV-C1), the 539

optimization function of our offloading strategy (Section IV-C2), 540

and our offloading decision algorithm to determine the offload- 541

ing scheme (Section IV-C3). 542

1) Contribution Factor: Offloading schemes determine 543

which functions shall be offloaded and which computing node 544

shall be offloaded. For a given context, it would lead to less 545

overall cost of offloading by using a better offloading scheme. A 546

context contains devices at different scenarios (DS), edge servers 547

(ES), and a cloud server (CS): 548

Definition 3. A context is a graph GC = (N,E) representing 549

the network environment, whereN denotes a set of local devices 550

and remote servers, and E denotes a set of communication 551

links among nodes. Each edge (np, nq) ∈ E denotes a data 552

transmission whose rate is vnp−nq
and whose round-trip time 553

rttnp−nq
is between np and nq . 554

Definition 4. An offloading scheme is defined as DEP = 555

{dep(f1), dep(f2), . . ., dep(fn)}, where fi is a function, and 556

dep(fi) ∈ N denotes the computing node to offload the func- 557

tion. 558

Let T dep(fj)

dep(fi)
(fi) represents the total offloading time of fi, 559

where dep(fi) and dep(fj) denote the offloading positions of fi 560

and its caller fj . The response time of application be expressed 561

as Tresponse, which equals to the sum of T
dep(fj)

dep(fi)
(fi), fi ∈ 562

Treefmain
.F . In addition, Sinvokefinq

= 〈Stime, Sdatasize〉 563

is obtained from the estimation model built in AndroidOff [23], 564

whereStime denotes the execution time andSdatasize denotes 565

the amount of data transmission except external invocations in fi 566

executed in nq . Note that,Einvokementioned in Section IV-A2 567

is different fromSinvoke in that it contains external invocations 568

shown at the bottom of this page. 569

2) Optimization Function: This section introduces our opti- 570

mization function (5), and we consider the one with the smallest 571

value as the optimal offloading scheme. 572

Eq. (5) calculates the response time of Treefa (the sub- 573

tree rooted at fa), which consists of the total offloading time 574

T
dep(fj)

dep(fi)
(fi) of all functions in this subtree. When fa is the 575

fmain, (5) calculates the response time of the application. Al- 576

gorithm 4 uses it to calculate the response time. 577

Eq. (6) calculates the total offloading time of fi, which is 578

composed of the total execution time Te
dep(fi)(fi) and the total 579

data transmission time Td
dep(fj)

dep(fi)
(fi) of fi in dep(fi). 580

T fa
response = T (Sinvoke,Gc, T reefa , DEPfa)

=
n∑

i=1

T
dep(fi)
dep(fj)

(fi) , fi ∈ Treefa .F, 〈fj , fi〉 ∈ Treefa .R.key (5)

T
dep(fi)
dep(fj)

(fi) = Te
dep(fi) (fi) + Td

dep(fi)
dep(fj)

(fi) (6)

Te
dep(fi) (fi) = Sinvokefidep(fi).Stime ∗ rfj−fi (7)

Td
dep(fi)
dep(fj)

(fi) =

(
Sinvokefidep(fi).Sdatasize

vdep(fj)−dep(fi)
+ rttdep(fj)−dep(fi)

)
∗ rfj−fi . (8)
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Eq. (7) calculates the total execution time of fi, which is the581

product of Stime of fi in dep(fi) and its call times.582

Eq. (8) calculates the total data transmission time between583

fi and fj , which is the sum of the transmission time and the584

round-trip time. In particular, the transmission time is calculated585

as the data transmission amount of fi over the transmission rate586

of dep(fi) and dep(fj).587

3) Offloading Decision Algorithm: A backtracking algo-588

rithm [37] transforms the solution space of a problem into a589

graph or a tree, which finds the optimal one by enumerating all590

feasible solutions. Based on the backtracking algorithm [37], we591

propose an offloading decision algorithm for the call-and-return592

applications. In a call-and-return application, when a function593

A calls a function B, the result returns to A after B is executed.594

For each function, our algorithm explores its execution locations595

by traversing the call tree in the depth-first order. The algorithm596

calculates the optimization-function value of each scheme and597

selects the scheme with the minimum value. Meanwhile, the598

algorithm integrates the depth-first traversal with the following599

two pruning mechanisms:600

1) Mechanism 1. A function can be offloaded only if its601

execution time would be shorter on the offloaded com-602

puting node. That is, if a function is executed on the603

computing node A and its caller function in the call tree is604

executed on the computing node B, the execution time on605

A must be shorter than that on B. Therefore, if there are606

more available computing nodes, this mechanism tends to607

reduce more time cost.608

2) Mechanism 2. When the computing node for the function609

fa is determined, the offloading schemes of its subtrees610

can be decided separately, which are rooted at fa’s callee611

functions in the call tree. Therefore, this mechanism is able612

to reduce time cost when a call tree has many branches.613

Mechanism 1 can effectively offload functions in most cases.614

As required by this mechanism, a function can only be offloaded615

to a remote computing node that outperforms the execution616

result on the local computing node, because it causes extra data617

transmission time.618

For Mechanism 2, the explanation is given as follows: 619

If a call tree Treefa (rooted at fa) contains n subtrees 620

{Treef1 , . . ., T reefn} andTreefi is a subtree rooted at function 621

fi, according to (5), the response time of Treefa is calcu- 622

lated by (9). When the offloading location of fa, i.e., dep(fa), 623

is determined, T
dep(fa)
dep(fa.caller)

(fa) is a constant. Meanwhile, 624

Sinvoke, Gc, Treefa , Treef1 ,..., Treefn are fixed parameters, 625

and DEPf1 , DEPf2 ,..., DEPfn are mutually independent pa- 626

rameters. Thus, the minimum response time of Treefa can be 627

calculated by (10), and the offloading schemes of fa’subtrees 628

can be decided separately. 629

Algorithm 4 describes the decision-making process. For a 630

given call tree Tree Treefmain
, the algorithm searches for the 631

optimal offloading scheme DEPfmain
(rooted at fmain) in a 632

MEC environment Gc. Line 1 initially adds a virtual function 633

(denoted by fmain.caller) to Treefmain
and sets the execu- 634

tion locations of fmain and fmain.caller to the mobile device 635

(DS). Line 2 traverses with the function getTraversalDEP () 636

to obtain DEPfmain
. Lines 3 to 32 define the function 637

getTraversalDEP () that searches for the optimal offloading 638

scheme for the tree or subtree Treefcur
(rooted at fcur), which 639

owns the minimum value of optimization function. Line 4 uses 640

DEPbest to record the best offloading scheme for Treefcur
. 641

Lines 5 to 6 initialize DEPbest and calculate its value of op- 642

timization function Tbest, in which execution locations of all 643

functions are set to the one of the caller function fcur.caller. 644

Line 7 determines whether the computing node for the caller 645

function fcur.caller perform best: If yes, according to Mecha- 646

nism 1, all functions in Treefcur
should be executed at the same 647

computing node as fcur.caller, and then Line 8 returns the initial 648

scheme of DEPbest and corresponding Tbest; If no, Lines 9 to 649

31 search for DEPbest by depth-first traversal. Lines 10 to 15 650

generate candidate computing nodes for executing fcur, which 651

are recorded in the set NodesSet. Only cut-point functions can 652

be offloaded, and we determine whether fcur is a cut-point 653

function: If no, NodesSet only contains the computing node 654

for the caller function dep(fcur.caller); If yes, NodesSet 655

also contains computing nodes with better performance than 656

T fa
response = T (Sinvoke,Gc, T reefa , DEPfa)

= T
dep(fa)
dep(fa.caller)

(fa) + T f1
response + T f2

response + · · ·+ T fn
response

= T
dep(fa)
dep(fa.caller)

(fa) + T (Sinvoke,Gc, T reef1 , DEPf1) + T (Sinvoke,Gc, T reefs , DEPfs)

+ · · ·+ T (Sinvoke,Gc, T reefn , DEPfn) (9)

min(T fa
response) = min(T

dep(fa)
dep(fa.caller)

(fa) + T f1
response + T f2

response + · · ·+ T fn
response)

= min(T
dep(fa)
dep(fa.caller)

(fa) + T (Sinvoke,Gc, T reef1 , DEPf1) + T (Sinvoke,Gc, T reefs , DEPfs)

+ · · ·+ T (Sinvoke,Gc, T reefn , DEPfn))

= min(T
dep(fa)
dep(fa.caller)

(fa))+min(T (Sinvoke,Gc, T reef1 , DEPf1))+min(T (Sinvoke,Gc, T reefs , DEPfs))

+ · · ·+min(T (Sinvoke,Gc, T reefn , DEPfn)). (10)
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Algorithm 4: Offloading Decision Algorithm.

Input: A call tree Treefmain
= (F,R); a context environment Gc = (N,E); a set of execution costs for each function

except external invocations Sinvoke
Output: An offloading scheme DEPfmain

= {dep(f1), dep(f2), . . ., dep(fn)}; the response time Tresponse

1: DEPfmain
.dep(fmain), DEPfmain

.dep
(fmain.caller)← DS

2: DEPfmain
, Tresponse ← getTraversalDEP (fmain, DEPfmain

.dep(fmain.caller))
3: function getTraversalDEPfcur, dep(fcur.caller)
4: DEPbest ← DEPfcur

5: DEPbest.dep(fi)← dep(fcur.caller), ∀fi ∈ Treebest
6: Tbest ← optimization function(Sinvoke,Gc, T reefcur

, DEPbest)
7: if dep(fcur.caller) is the best performing computing node then
8: returnDEPbest, Tbest

9: else
10: NodesSet← ∅, NodesSet← NodesSet+ dep(fcur.caller)
11: if fcur ∈ divFunction then
12: for each computing node n with better performance than dep(fcur.caller) do
13: NodesSet← NodesSet+ n
14: end for
15: end if
16: for each n ∈ NodesSet do
17: DEPtemp ← DEPfcur

18: DEPtemp.dep(fcur)← n
19: if post(fcur) 	= ∅ then
20: for each fi in post(fcur) do
21: DEP, T ← getTraversalDEP (fi, n)
22: DEPtemp.dep(fj)← DEP.dep(fj), ∀fj ∈ Treefi
23: end for
24: end if
25: Ttemp ← optimization function(Sinvoke,Gc, T reefcur

, DEPtemp)
26: if Ttemp < Tbest then
27: Tbest ← Ttemp, DEPbest ← DEPtemp

28: end if
29: end for
30: returnDEPbest, Tbest

31: end if
32: end Function

dep(fcur.caller), according to Mechanism 1. Lines 16 to 29657

respectively perform a depth-first traversal of Treefcur
, for658

each candidate computing node n for fcur (n ∈ NodesSet).659

According to Mechanism 2, when the execution location of660

fcur is fixed, the offloading schemes of its subtrees can be661

decided separately, which are rooted at fcur’s callee functions662

in the call tree. The traversal is as follows: Lines 17 to 18 use663

DEPtemp to record the best offloading scheme for Treefcur
664

when the execution location of fcur is n. To obtain DEPtemp,665

Lines 19 to 24 call the function getTraversalDEP () for666

each fcur’s calee functions fi to obtain the best offloading667

scheme for Treefi . Lines 25 to 28 calculate the optimization-668

function value of DEPtemp, and update DEPbest if it is less669

than the current DEPbest. When the traversal (Lines 16 to 29)670

is completed, Line 30 returns DEPbest and the corresponding671

Tbest. Based on the function getTraversalDEP (), the optimal672

offloading scheme DEPfmain
can be obtained.673

V. EVALUATION 674

In this section, we established an MEC environment to eval- 675

uate the effectiveness of FUNOff (Section V-A). In this en- 676

vironment, we compared FUNOff with AndroidOff [23], [24] 677

and MAUI [9] (Section V-B). Beside the overall effectiveness, 678

we conducted experiments to explore the details of FUNOff 679

(Section V-C). 680

A. MEC Environment 681

Our MEC environment includes two scenes (college and 682

community), and each scene contains four regular locations. 683

In total, our experimental environment uses five computing 684

nodes, including two mobile devices and three remote servers. 685

Table III lists the network conditions between these computing 686

nodes, where each cell denotes the round-trip time and the data 687

transmission rate between our mobile devices and corresponding 688
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TABLE III
THE DEVICE CONTEXTS

TABLE IV
THE PERFORMANCE OF COMPUTING NODES

remote servers. For example, in Table III(a), the fourth column689

of the second row denotes that the round-trip time between our690

mobile device and Edge1 is 40ms, and the transmission rate691

reaches 1.5Mb/s in the garden. The data in Table III are collected692

by WLAN-RTT.2693

We have installed the applications on two mobile devices. One694

mobile device is Huawei Honor MYA-AL103 with a 1.4 GHz695

4 core CPU, 2 GB RAM (Device1, the low-end device) and696

the other is Huawei Honor STF-AL004 with 2.4 GHz 4 core697

CPU, 4 GB RAM (Device2, the high-end device). Our MEC698

environment has two edge servers (Edge1 and Edge2) and a699

cloud server (cloud). Edge1 is a server with a 2.5 GHz 8 core700

CPU and 4 GB RAM; Edge2 is a server with a 3.0 GHz 8 core701

CPU and 8 GB RAM; Cloud is a server with a 3.6 GHz 16702

core CPU and 16 GB RAM. To measure the performance of703

each computing node, we execute an identical set of functions,704

and compare the execution time with that on Device1. Table IV705

shows the results.706

In our evaluations, the subject applications include a License707

Plate Recognition Application (LPRA) and a Target Detection708

Application (TDA). LPRA performs preprocessing and ocr pro-709

cessing on the images that are extracted from video frames to710

obtain the license plate numbers, and stores them on the mobile711

device. TDA performs pedestrian detection and feature extrac-712

tion on the images extracted from the video and saves the results713

on the mobile device after feature comparison with the person714

to be recognized. We installed them on both mobile devices.715

In our experiments, we walk around the above two scenes and716

execute these two applications. In this process, we record the data717

transmission amount and the execution time of each function call718

on devices, Edge1, Edge2, and Cloud. Upholding the principle of719

2https://developer.android.google.cn/guide/topics/connectivity/wifi-rtt
3http://huawei-update.com/device-list/yma-al10
4http://huawei-update.com/device-list/stf-al00

rigor, we repeat this process twenty times to avoid unnecessary 720

errors. For example, Fig. 7(a) shows the collected LPRA data 721

on the Huawei Honor MYA-AL10. The ellipse indicates the 722

function, and the data above it indicates the execution time 723

of the function on this device. For example, 16 in the dashed 724

box indicates the time (in ms) of one execution of the function 725

OAlg.gm() on Huawei Honor MYA-AL10. The connecting line 726

indicates the call relationship between the functions, and its data 727

indicates the number of calls and the amount of data transferred 728

between them. For example, 1:280 in the dashed box indicates 729

the function OAlg.Graymath() makes one call to the function 730

OAlg.gm(), and the amount of data transfer generated by one 731

call is 280B. Fig. 7(b) shows the collected TDA data on the 732

Huawei Honor MYA-AL10. 733

The parameters λ, v and rtt used in the preprocessing al- 734

gorithm (Algorithm 3) need to be set according to the ideal 735

offloading environment. To find all possible cut-points during 736

the preprocessing phase, the ideal offloading environment in 737

our experimental environments (i.e., from the Huawei Honor 738

MYA-AL10 to the Edge2 in the laboratory of college) is selected 739

with the consideration of server performance and data trans- 740

mission rate to conduct the simulation offloading experiment 741

of Algorithm 3. λ is set to 2.8 based on the performance ratio 742

between MYA-AL10 and Edge2, as shown in Table IV. v and rtt 743

are set to 1.5 Mb/s and 40ms, respectively, based on the network 744

connection between them, as shown in Table III(a). 745

B. Overall Comparison 746

1) Compared Approach and Scenarios: In this section, we 747

compared FUNOff with AndroidOff [23], [24] and MAUI [9]. 748

AndroidOff works at the granularity of objects. It traverses all 749

possible deployments from the mobile device to servers, and 750

searches for the decision that can minimize the response time. 751

MAUI works at the granularity of methods. It uses integer linear 752

programming to decide where the movable functions shall be 753

moved to servers. 754

Owing to the mobility of devices, we considered the following 755

two scenarios: (1) we stay in different fixed locations with 756

mobile devices (Section V-B2) and (2) with mobile devices, we 757

move between different locations in the college and community 758

respectively (Section V-B3). We use the response time generated 759

by the real execution of the application as the metric of per- 760

formance. In addition to task execution and data transmission 761

time, the response time includes the additional time overhead 762

generated by the mechanisms. Each experiment is repeated for 763

20 times to ensure its reliability [22]. 764

2) Performance Comparison of Fixed Locations: Fig. 8 765

shows that FUNOff achieves the best performance in all cases. 766

Fig. 9 shows the offloading schemes of AndroidOff, MAUI, 767

and FUNOff when running LPRA on Honor MYA-AL10 in the 768

garden. 769

Comparing the functions of the RecInEachChar class in 770

Fig. 9(a) with (b) we find that FUNOff offloaded the instances 771

of these functions to three computing nodes (Edge2, Cloud, 772

and Device1). Note that the device can connect to the Cloud 773

via Edge1 or Edge2; AndroidOff offloaded the instances of 774
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Fig. 7. LPRA and TDA performed on Huawei Honor MYA-AL10 (a) LPRA. (b) TDA.

Fig. 8. Performance comparison of running LPRA and TDA with different offloading approaches when staying in different locations fixedly (a) Running LPRA
on Honor MYA-AL10. (b) Running LPRA on Honor STF-AL00 (c) Running TDA on Honor MYA-AL10 (d) Running TDA on Honor STF-AL00.

the whole class to Edge2. As our offloading granularity is775

finer, FUNOff is more flexible than AndroidOff. As a result,776

it improves the results of AndroidOff.777

Comparing Fig. 9(a) with (c), we find that MAUI moved all778

methods to a single server, and this scheme is sub-optimized.779

Instead, as our offloading decision can weigh the different net-780

work connections, FUNOff offloaded the functions whose data781

transmission is intensive to remote servers with good network782

connections. Meanwhile, as our offloading decision can weigh783

the different performance of servers, FUNOff offloaded the784

functions whose computation is intensive to remote servers with785

better computation power but relatively poor network connec-786

tions.787

To further analyze our improvements, we next introduce the788

results of LPRA, when it is installed on Honor MYA-AL10789

and moved around the playground. Both FUNOff and MAUI790

support offloading at function granularity, and only a cloud791

server is available here, so their offloading schemes are the792

same. However, the results in Fig. 8(a) show that FUNOff793

still improves by about 10% over MAUI. This is because the794

offloading mechanism introduces additional overhead such as795

the execution of extra statements, the response time of the 796

server, etc. Since FUNOff only refactors the cut-point functions, 797

while MAUI needs to refactor all the methods, this causes more 798

additional overhead. And AndroidOff will incur an overhead of 799

approximately 170 ms, which originates from the proxies. 800

3) Performance Comparison When Cruising Between Dif- 801

ferent Locations: Due to the different computing resources and 802

network connections in locations, the offloading scheme needs 803

to be updated when a mobile device moves to a new location. The 804

results from Honor MYA-AL10 and Honor STF-AL00 in both 805

the college and community scenes are consistent. For simplicity, 806

we only show the results of MYA-AL10 when it is in the college. 807

Fig. 10 shows the decision and preparation costs in the four 808

locations of the college scene. According to the results, FUNOff 809

has the following advantages: 810

(1) FUNOff has the least decision time. For this measure, 811

the averages of FUNOff, AndroidOff, and MAUI on LPRA are 812

218ms, 1,206ms, and 442ms, and the averages on TDA are 3.8ms, 813

1333ms, and 280ms, respectively. FUNOff only decides the 814

offloading position of cut-point functions, and different branches 815

can make decisions independently, the details of Algorithm 3 are 816
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Fig. 9. Offloading schemes when running LPRA on the Honor MYA-AL10 in garden (a) FUNOff. (b) AndroidOff (c) MAUI.

Fig. 10. The time cost of adjusting offloading schemes of different offloading
approaches for LPRA and TDA on the Honor MYA-AL10 in the college (a)
LPRA. (b) TDA.

shown in Section IV-C3. Therefore, it can make decisions in a817

short time. AndroidOff is based on traversal and needs to select818

the best one from all possible object distribution schemes. There-819

fore, its decision time is exponentially related to the number of820

movable objects. MAUI is based on the program partitioning 821

strategy, and determines offloading schemes at runtime. There- 822

fore, its decision time is linearly related to the number of movable 823

methods. The compared approaches require more decision times 824

than FUNOff. 825

(2) When the network connection changes, FUNOff and 826

MAUI do not need extra preparations for the new compute 827

offloading, but the average preparation time of AndroidOff on 828

LPRA and TDA are 1,671ms and 2145ms, respectively. Both 829

FUNOff and MAUI offload applications at the granularity of 830

functions (methods), and they store program states on mobile 831

devices. As a result, functions can be executed directly on a new 832

remote server when the network connection changes. Android- 833

Off offloads applications at the granularity of objects, and objects 834

are executed on either mobile devices, edge servers, or cloud 835

servers. When an offloading scheme changes, the application 836

needs to offload the objects from an old computing node to a 837

new computing node. Moreover, if an offloaded object becomes 838

inaccessible, the application crashes and has to be restarted. 839

Fig. 11 shows results on Honor MYA-AL10. FUNOff has 840

the best results; AndroidOff is the second in most cases; and 841

MAUI has the worst. FUNOff and AndroidOff can use mul- 842

tiple remote servers for computation offloading, but MAUI is 843

designed to use a single remote server. When the device context 844

changes, the response time of FUNOff and MAUI only increases 845

slightly due to the additional cost caused by making decisions. 846

In contrast, the response time of AndroidOff increases by about 847

three seconds, mainly due to the decision time and the offloading 848
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Fig. 11. Performance comparison of running LPRA and TDA on Honor MYA-
AL10 with different offloading approaches when cruising between four locations
in the college (a) LPRA. (b) TDA.

preparation time. In addition, when the device cruised from the849

teaching building to the garden, AndroidOff failed to respond850

for about twenty seconds. The original object on the cloud was851

inaccessible, so the application crashed and restarted.852

C. Detailed Comparison853

In this section, we explore the effectiveness of the cut-point854

algorithm (Section V-C1), the offloading schemes of different855

decision algorithms (Section V-C2), and their time costs (Sec-856

tion V-C3).857

1) Evaluation of the Cut-Point Algorithm: Setting. In this858

section, we evaluate the rationality and feasibility of the cut-859

point algorithm (Algorithm 3) which extracts cut-point functions860

from the call tree.861

For each case, we analyze the call tree and the MEC environ-862

ment to manually obtain the corresponding optimal offloading863

scheme. Next, we take the union of functions offloaded in those864

offloading schemes as the ideal set of cut-point functions, i.e., the865

gray nodes as shown in Fig. 12(a). We compare the set obtained866

by the cut-point algorithm (Algorithm 3) with the ideal set. If the867

cut-point set covers the ideal set, our cut-point algorithm can find868

all the functions offloaded in those optimal offloading schemes869

and will not affect the search for the optimal offloading scheme.870

If the cut-point set contains redundant cut-point functions, the871

extra number of decisions due to the extra cut-point functions872

will incur additional decision overhead. With the parameters set873

in Section V-A, we use Algorithm 3 to calculate the cut-point874

set, and compare it with the ideal set.875

Result. Fig. 12(b) shows the results of the cut-point algorithm.876

Comparing this figure with Fig. 12(a), the ideal set can be877

covered by the cut-point set obtained by the cut-point algorithm.878

Meanwhile, the additional decision cost caused by the redundant879

Fig. 12. Sets of the cut-point functions of LPRA and TDA (a) The ideal set
of cut-point functions. (b) The cut-point set obtained by Algorithm 3.

cut-point functions in our set is acceptable, which will be dis- 880

cussed in Section V-C3. 881

2) Evaluation of the Offloading Decision Algorithm: Setting. 882

In this section, we compare our decision algorithms with the 883

traversal algorithm [23], [24], the Q-learning [38], the particle 884

swarm optimization with the genetic algorithm (PSO-GA) [31], 885

and the classical genetic algorithm (GA) [30]. In particular, our 886

comparison includes two stages: with or without our preprocess- 887

ing step, which extracts cut-point functions. 888

Traversal Algorithm. The unpreprocessed traversal algorithm 889

obtains the optimal offloading scheme by enumerating the com- 890

binations of all the functions on different computing nodes. The 891
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TABLE V
RESULTS OF OFFLOADING SCHEMES OBTAINED BY DIFFERENT DECISION ALGORITHMS

preprocessed traversal algorithm enumerates only the cut-point892

functions.893

Our Algorithms. We design two versions of Algorithm 4. The894

original version is called the preprocessed decision algorithm,895

which makes decisions for the cut-point functions. Another896

version is called the unpreprocessed decision algorithm, which897

makes decisions on the execution location for all functions of898

the call tree.899

Q-Learning. It stores each state-action pair and its correspond-900

ing Q-values into a Q-table, and maximizes the accumulative901

rewards of an offloading plan. The learning rate α, the discount902

factor β, the probability of ε-greedy, and the max training903

epochs are set to 0.01, 0.95, 0.1, and 100,000, respectively. The904

algorithm will terminate and return the best one when the result905

is constant for 5,000 consecutive iterations. The unpreprocessed906

Q-learning needs to make decisions for all functions, while907

the preprocessed Q-learning only makes decisions for cut-point908

functions.909

PSO-GA. It introduces the crossover and mutation operators910

of GA to improve the particle update strategy of the traditional911

PSO algorithm. The unpreprocessed version encodes all the912

functions into a chromosome, and the preprocessed version only913

encodes the cut-point functions. The start and end values of914

the two acceleration coefficients c1 and c2, and the maximum915

and minimum values of the inertia weight w are set to 0.9,916

0.2, 0.9, 0.4, 0.9, and 0.4, respectively. The iteration number 917

and population number of the unpreprocessed PSO-GA are set 918

to 2000 and 150, while the preprocessed ones are set to 1100 919

and 80. 920

GA. The unpreprocessed genetic algorithm encodes all the 921

functions into a chromosome, applies genetic operations (e.g., 922

selection, crossover, and mutation) to generate new offloading 923

schemes, and uses the optimization function to select the best 924

ones. The evolutionary generation, the population number, the 925

crossover probability, and the mutation probability are set as 926

2,000, 150, 0.6, and 0.3. The preprocessed genetic algorithm 927

only encodes the cut-point functions, and its parameters are set 928

as 1,100, 80, 0.6, and 0.3, respectively. 929

As the traversal algorithm enumerates all candidate offloading 930

schemes, it is able to find the optimal scheme. We take its optimal 931

scheme and response time as the baseline. If the response time 932

corresponding to the offloading scheme obtained by other algo- 933

rithms is consistent with it, it means that they find the optimal 934

scheme. If the response time is larger than the baseline, the 935

algorithm finds an offloading scheme with a worse performance 936

than the optimal scheme, and the larger the response time, the 937

worse the performance. Each algorithm is repeated 20 times 938

separately and the average value is taken as its final result. 939

Result. The experimental results are shown in Table V. The 940

tick in this table indicates that the corresponding algorithm 941
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finds the optimal offloading scheme. The gray part indicates942

that it does, and the values denote the increased response time943

compared with the optimal offloading scheme. For example,944

in the scenario of Honor MYA-AL10 in the playground in Ta-945

ble V(a), the response time corresponding to the optimal scheme946

is 3864.4ms. In this scenario, the response time corresponding947

to the offloading scheme obtained from the unpreprocessed948

PSO-GA is 3978.3ms, which is an increase of 2.947% compared949

to 3864.4ms, so the value of the corresponding position in950

Table V(a) is set to 2.947%.951

First, we compare the performance of the algorithms without952

preprocessing. As shown in Table V, our algorithm achieves the953

same performance as the traversal algorithm for all the 32 cases.954

Our algorithm finds the optimal schemes, since it is an improved955

traversal algorithm and its two effective pruning mechanisms are956

unlikely to affect the search for the optimal offloading scheme957

(Section IV-C3 for more details). The Q-learning adaptively958

learns appropriate scheduling decisions by interacting with the959

network environment and can obtain the same results as the960

traversal algorithm in 26 of 32 total cases. However, in other961

6 cases, its response time is 0.319%-4.374% higher than the962

traversal algorithm. Unlike the traversal algorithm that enumer-963

ates all candidate offloading schemes, the learning process of964

Q-learning is uncertain. As the low occurrence of some states965

causes the randomness of the Q-table, Q-learning is unable to966

achieve an optimal offloading scheme in some cases. PSO-GA967

cannot obtain the optimal offloading schemes in all cases, and968

its response time is 1.138%-32.355% more than the optimal969

offloading scheme. Although PSO-GA improves the stochastic-970

ity through the crossover operations, it still suffers from local971

optimums. Therefore, PSO-GA fails to obtain the global optimal972

scheme in a large solution space. Similarly, GA cannot obtain973

the optimal offloading schemes in all cases, and its response time974

is 1.314%-45.972% more than the optimal offloading scheme.975

GA has strong stochasticity and converges slowly, and thus it is976

difficult to converge to a better offloading scheme with a limited977

number of iterations.978

Furthermore, we compare the performance of each algorithm979

with and without preprocessing. The traversal algorithm with980

preprocessing still obtains the optimal scheme in all cases,981

because the cut-point set obtained by the cut-point algorithm982

(Algorithm 3) can cover the ideal set, as analyzed in Sec-983

tion V-C1. Similarly, our algorithm with preprocessing can984

obtain the same scheme without processing in each case. The985

Q-learning with preprocessing can find the optimal scheme in986

more scenarios than the one without preprocessing, indicating987

that our preprocessing algorithm can improve the performance988

of Q-learning by reducing the size of the solution space, and thus989

enhance the probability of finding a better state. For PSO-GA990

and GA, the performance is significantly improved in all cases991

with preprocessing, although the optimal solution cannot be992

obtained. For PSO-GA with processing, the response time of its993

offloading scheme is reduced by 0.8%-19.7% compared to that994

without processing. For GA with processing, the response time995

of its offloading scheme is reduced by 0.7%-22.9% compared996

to that without processing. As the algorithm with processing997

only makes decisions on the cut-point functions, it drastically998

reduces the size of the solution space, allowing the algorithms999

to find better offloading schemes more efficiently.1000

TABLE VI
COMPARISON OF DECISION TIME

3) The Time Cost of Decision Algorithm: Setting. The exper- 1001

imental setup is the same as Section V-C2, but we record the 1002

decision time to explore their cost. 1003

Result. As shown in Table VI, compared to other algorithms, 1004

the average decision time of our algorithm is the shortest on 1005

both LPRA and TDA. On LPRA, the decision time of our 1006

unpreprocessed algorithm is 8ms, which saves 98.1%-99.9% 1007

compared to other unpreprocessed algorithms. Moreover, the 1008

decision time of our preprocessed algorithm is 3ms, which saves 1009

93.6%-99.9% compared to other preprocessed algorithms. On 1010

TDA, the decision time of our unpreprocessed algorithm is 7ms, 1011

which saves 98.8%-99.9% compared to other unpreprocessed 1012

algorithms. Moreover, the decision time of our preprocessed 1013

algorithm is 4ms, which saves 94.7%-99.9% compared to other 1014

preprocessed algorithms. 1015

For both preprocessed and unpreprocessed algorithms, our 1016

algorithm, Q-learning, PSO-GA, and GA reduced the costs 1017

of the traversal algorithm by 99.5%, 62.5%, 89.1%, 87.8% 1018

and 85.7% on LPRA, and 98.2%, 42.6%, 86.9%, 82.7% and 1019

81.7% on TDA, respectively. Our preprocessing step extracts 1020

cut-point functions, reducing the search space and decision 1021

times (Section V-C1 for more details). As a result, our pre- 1022

processing effectively improves the performance of all decision 1023

algorithms. 1024

VI. DISCUSSION 1025

A. Extending to Other Applications 1026

Our work focuses on object-oriented applications in Java. Our 1027

algorithm is mainly designed for the call-and-return applica- 1028

tions, and it needs to be extended to other styles of applications 1029

(e.g., workflow applications and DNN-based applications). For 1030

example, in a workflow application, a function B is called by 1031

function A, but passes its execution result to a function C. On 1032

one hand, the offloading mechanism proposed in this paper 1033

can be extended to different types of applications. To support 1034

the applications offloading at function granularity in MEC, the 1035

statelessness of functions is of utmost importance, since it needs 1036

to avoid the loss of state information when the environment 1037

changes. For example, each neural network layer of the DNN 1038

model can be considered as a stateless function, since all parame- 1039

ters required for the computation of each layer are directly passed 1040

in through the input. This style is simpler than OO applications 1041
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because it does not require any additional transformation. On1042

the other hand, the cut-point function extraction (Algorithm 3)1043

can be extended to other types of applications to reduce the1044

decision overhead. For example, fully connected layers in DNN1045

models, which usually have high execution latency, are suitable1046

to be offloaded and can be considered as cut-points. And neural1047

networks with low execution latency and high data transmission,1048

such as activation layers, are more suitable to be executed on the1049

same computing node as their preceding layers.1050

B. Evaluating in Real-World Environments1051

In our evaluations, we established an MEC environment1052

to maximize the simulation of the real-world environment.1053

The two mobile devices represent low-performance and high-1054

performance devices, and the network conditions between the1055

mobile devices and the remote servers vary by locations. The1056

results reveal the effectiveness of our approach. The differences1057

between our MEC environment and the real-world environments1058

are that: (1) the application runs in a single-user environment.1059

Therefore, the execution time of each call to the same class of1060

methods on the same computing node is generally close to their1061

average; (2) Our mobility model for mobile devices is simplified.1062

We ignore the wireless fading channel caused by device move-1063

ments, so the network conditions between a mobile device and1064

the same remote server in the same location are generally close1065

to their average. Despite the above differences, our approach1066

can still work in the real-world environment, just with some1067

performance difference. In addition, this study focuses primarily1068

on supporting the dynamic offloading of applications in MEC at1069

function granularity; the two issues above are orthogonal to the1070

problem in this study. In future work, we will consider the above1071

factors, such as supporting multi-user cases via game-theoretic1072

models [39], [40] and supporting complex mobility models1073

through other offloading decision algorithms [32], [41].1074

VII. CONCLUSION1075

To make use of the scattered and changing computing re-1076

sources in MEC, this paper proposes an adaptive offloading1077

approach, called FUNOff, which supports the offloading at the1078

granularity of functions. For an object-oriented application, it1079

extracts a call tree through code analysis, and takes a preprocess-1080

ing step to find the function invocations suitable for offloading.1081

Next, FUNOff translates such functions to a specific program1082

structure that allows remote access. Finally, it generates an1083

offloading scheme at runtime according to the context of the1084

mobile device, and sends functions to multiple devices according1085

to the offloading scheme. Our evaluations on real applications1086

show that FUNOff significantly improves the performance of1087

applications. In addition, the results show that the offloading1088

at the granularity of functions is more suitable for computation1089

offloading in MEC, and our preprocessing effectively improves1090

the performance of offloading decision algorithms.1091

REFERENCES 1092

[1] Z. Su, Y. Hui, and T. H. Luan, “Distributed task allocation to enable 1093
collaborative autonomous driving with network softwarization,” IEEE J. 1094
Sel. Areas Commun., vol. 36, no. 10, pp. 2175–2189, Oct. 2018. 1095

[2] C. Liu et al., “A new deep learning-based food recognition system for 1096
dietary assessment on an edge computing service infrastructure,” IEEE 1097
Trans. Services Comput., vol. 11, no. 2, pp. 249–261, Mar./Apr. 2018. 1098

[3] T. Braud, F. H. Bijarbooneh, D. Chatzopoulos, and P. Hui, “Future net- 1099
working challenges: The case of mobile augmented reality,” in Proc. IEEE 1100
37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1796–1807. 1101

[4] T. Zhao, J. Liu, Y. Wang, H. Liu, and Y. Chen, “Towards low-cost sign 1102
language gesture recognition leveraging wearables,” IEEE Trans. Mobile 1103
Comput., vol. 20, no. 4, pp. 1685–1701, Apr. 2021. 1104

[5] F. Yang, J. Li, T. Lei, and S. Wang, “Architecture and key technologies for 1105
Internet of Vehicles: A survey,” IEEE J. Commun. Inf. Netw., vol. 2, no. 2, 1106
pp. 1–17, 2017. 1107

[6] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a 1108
UAV-mounted cloudlet: Optimization of bit allocation and path plan- 1109
ning,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063, 1110
Mar. 2018. 1111

[7] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, “Resource allocation and 1112
computation offloading with data security for mobile edge computing,” 1113
Future Gener. Comput. Syst., vol. 100, pp. 531–541, 2019. 1114

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture 1115
and computation offloading,” IEEE Commun. Surveys Tut., vol. 19, no. 3, 1116
pp. 1628–1656, Third Quarter 2017. 1117

[9] E. Cuervo et al., “MAUI: Making smartphones last longer with code 1118
offload,” in Proc. Int. Conf. Mobile Syst., Appl. Serv., 2010, pp. 49–62. 1119

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elas- 1120
tic execution between mobile device and cloud,” in Proc. Conf. Comput. 1121
Syst., 2011, pp. 301–314. 1122

[11] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A computation 1123
offloading framework for smartphones,” in Proc. Int. Conf. Mobile Syst., 1124
Appl. Serv., 2012, pp. 59–79. 1125

[12] J. Pan and J. McElhannon, “Future edge cloud and edge computing for 1126
Internet of Things applications,” IEEE Internet of Things J., vol. 5, no. 1, 1127
pp. 439–449, Feb. 2018. 1128

[13] H. Guo, J. Liu, and J. Lv, “Toward intelligent task offloading at the edge,” 1129
IEEE Netw., vol. 34, no. 2, pp. 128–134, Mar./Apr. 2020. 1130

[14] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative 1131
mobile edge computing in 5G networks: New paradigms, scenarios, 1132
and challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, 1133
Apr. 2017. 1134

[15] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision 1135
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 1136
Oct. 2016. 1137

[16] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation of- 1138
floading in green mobile edge cloud computing,” IEEE Trans. Services 1139
Comput., vol. 12, no. 5, pp. 726–738, Sep./Oct. 2019. 1140

[17] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on 1141
mobile edge computing: The communication perspective,” IEEE Commun. 1142
Surveys Tut., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter 2017. 1143

[18] P. Zhao, H. Tian, K.-C. Chen, S. Fan, and G. Nie, “Context-aware TDD 1144
configuration and resource allocation for mobile edge computing,” IEEE 1145
Trans. Commun., vol. 68, no. 2, pp. 1118–1131, Feb. 2020. 1146

[19] X. Hou et al., “Reliable computation offloading for edge-computing- 1147
enabled software-defined IoV,” IEEE Internet Things J., vol. 7, no. 8, 1148
pp. 7097–7111, Aug. 2020. 1149

[20] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and S. 1150
Secci, “ULOOF: A user level online offloading framework for mobile edge 1151
computing,” IEEE Trans. Mobile Comput., vol. 17, no. 11, pp. 2660–2674, 1152
Nov. 2018. 1153

[21] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui, “Dandelion: 1154
A unified code offloading system for wearable computing,” IEEE Trans. 1155
Mobile Comput., vol. 18, no. 3, pp. 546–559, Mar. 2019. 1156

[22] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear: 1157
Adaptive local offloading for on-wearable deep learning,” IEEE Trans. 1158
Mobile Comput., vol. 19, no. 2, pp. 314–330, Feb. 2020. 1159

[23] X. Chen, J. Chen, B. Liu, Y. Ma, and H. Zhong, “AndroidOff: Offloading 1160
Android application based on cost estimation,” J. Syst. Softw., vol. 158, 1161
2019, Art. no. 110418. 1162

[24] X. Chen, S. Chen, M. A. Yun, B. Liu, Y. Zhang, and G. Huang, “An 1163
adaptive offloading framework for Android applications in mobile edge 1164
computing,” SCIENCE CHINA Inf. Sci., vol. 062, no. 008, pp. 110–126, 1165
2019. 1166



IE
EE P

ro
of

18 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, JANUARY 2023

[25] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling and1167
workflow scheduling of microservice-based applications in clouds,” IEEE1168
Trans. Parallel Distrib. Syst., vol. 30, no. 9, pp. 2114–2129, Sep. 2019.1169

[26] G. A. S. Cassel et al., “Serverless computing for Internet of Things:1170
A systematic literature review,” Future Gener. Comput. Syst., vol. 128,1171
pp. 299–316, 2022.1172

[27] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of1173
serverless computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54, 2019.1174

[28] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-1175
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with Open-1176
Lambda,” in Proc. 8th USENIX Workshop Hot Topics Cloud Comput.,1177
2016, pp. 33–39.1178

[29] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refac-1179
toring Android Java code for on-demand computation offloading,” ACM1180
SIGPLAN Notices, vol. 47, no. 10, pp. 233–248, 2012.1181

[30] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code offloading for1182
wearable computing,” IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1,1183
pp. 74–83, Mar. 2015.1184

[31] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-1185
efficient offloading for DNN-based smart IoT systems in cloud-edge envi-1186
ronments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 683–697,1187
Mar. 2022.1188

[32] Y. Du, J. Li, L. Shi, T. Liu, F. Shu, and Z. Han, “Two-tier matching game1189
in small cell networks for mobile edge computing,” IEEE Trans. Services1190
Comput., vol. 15, no. 1, pp. 254–265, Jan./Feb. 2022.1191

[33] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy cost models1192
of smartphones for task offloading to the cloud,” IEEE Trans. Emerg.1193
Topics Comput., vol. 3, no. 3, pp. 384–398, Sep. 2015.1194

[34] K. Elgazzar, P. Martin, and H. S. Hassanein, “Cloud-assisted computation1195
offloading to support mobile services,” IEEE Trans. Cloud Comput., vol. 4,1196
no. 3, pp. 279–292, Third Quarter 2016.1197

[35] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,1198
“mCloud: A context-aware offloading framework for heterogeneous mo-1199
bile cloud,” IEEE Trans. Services Comput., vol. 10, no. 5, pp. 797–810,1200
Sep./Oct. 2017.1201

[36] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application parti-1202
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.1203
Syst., vol. 30, no. 7, pp. 1464–1480, Jul. 2019.1204

[37] P. Civicioglu, “Backtracking search optimization algorithm for numer-1205
ical optimization problems,” Appl. Math. Comput., vol. 219, no. 15,1206
pp. 8121–8144, 2013.1207

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.1208
Cambridge, MA, USA: MIT Press, 2018.1209

[39] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-1210
aware data offloading in multi-server multi-access edge computing en-1211
vironment,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1405–1418,1212
Jun. 2020.1213

[40] P. K. Bishoyi and S. Misra, “Enabling green mobile-edge computing for1214
5G-based healthcare applications,” IEEE Trans. Green Commun. Netw.,1215
vol. 5, no. 3, pp. 1623–1631, Sep. 2021.1216

[41] Y. Li, D. Guo, Y. Zhao, X. Cao, and H. Chen, “Efficient risk-averse request1217
allocation for multi-access edge computing,” IEEE Commun. Lett., vol. 25,1218
no. 2, pp. 533–537, Feb. 2021.1219

Xing Chen (Member, IEEE) received the BS and1220
PhD degrees from Peking University, in 2008 and1221
2013, respectively. He is a professor with Fuzhou1222
University, and the director of Fujian Key Laboratory1223
of Network Computing and Intelligent Information1224
Processing. He joined Fuzhou University since 2013.1225
He focuses on the software systems and engineer-1226
ing approaches for cloud and mobility. His current1227
projects cover the topics from self-adaptive software,1228
computation offloading, model driven approach and1229
so on. He has published more than 80 journal and1230

conference articles, including IEEE Transactions on Parallel and Distributed1231
Systems, IEEE Transactions on Cloud Computing, IEEE Transactions on In-1232
dustrial Informatics, etc. He obtained the Natural Science Fund of Fujian for1233
Distinguished Young Scholars and the Program of Fujian for the Top Young1234
Talents. He was awarded two First Class Prizes for Provincial Scientific and1235
Technological Progress, separately, in 2018 and 2020.1236

1237

Ming Li received the BS degree in computer sci- 1238
ence and technology from Fuzhou University, Fujian, 1239
China, in 2019, where he is currently working to- 1240
ward the PhD degree in computer technology with 1241
the College of Mathematics and Computer Science, 1242
Fuzhou University. He has also been a part of the Fu- 1243
jian Key Laboratory of Network Computing and In- 1244
telligent Information Processing, Fuzhou University, 1245
since September 2019. His current research interests 1246
include system software, and edge computing. 1247

1248

Hao Zhong (Member, IEEE) received the MS and 1249
PhD degrees from Peking Univeristy in 2005 and 1250
2009, respectively. He is an associate professor with 1251
Shanghai Jiao Tong University. His research interest 1252
is the area of software engineering. He served on 1253
the program committees of reputable venues such 1254
as ICSE, ESEC/FSE, ASE, OOPSLA, ICSME, MSR 1255
and COMPSAC. He is a recipient of ACM SIGSOFT 1256
Distinguished Paper Award, the best paper award of 1257
ASE, and the best paper award of APSEC. 1258

1259

Xiaona Chen received the BS degree in software 1260
engineering from Fuzhou University, Fujian, China, 1261
in 2019. She is currently working toward the MS 1262
degree in software engineering with the College of 1263
Mathematics and Computer Science, Fuzhou Univer- 1264
sity. She has also been a part of the Fujian Key Labora- 1265
tory of Network Computing and Intelligent Informa- 1266
tion Processing, Fuzhou University, since September 1267
2019. Her current research interests include system 1268
software, and computation offloading. 1269

1270

Yun Ma (Member, IEEE) received the PhD degree 1271
majoring in computer science from the School of 1272
EECS, Peking University, under the direction of pro- 1273
fessor Hong Mei and professor Gang Huang. His 1274
research interests lie in mobile computing, Web tech- 1275
nologies, and services computing. Currently, he fo- 1276
cuses on synergy between the mobile and the Web, 1277
trying to improve the mobile user experience by lever- 1278
aging the best practices from native apps and Web 1279
apps. 1280

1281

Ching-Hsien Hsu (Senior Member, IEEE) is a chair 1282
professor and the dean of the College of Information 1283
and Electrical Engineering, Asia University, Taiwan. 1284
His research includes high-performance computing, 1285
cloud computing, parallel and distributed systems, 1286
Big Data analytics, ubiquitous/pervasive computing, 1287
and intelligence. He has published 100 papers in top 1288
journals such as IEEE Transactions on Parallel and 1289
Distributed Systems, IEEE Transactions on Services 1290
Computing, IEEE Transactions on Cloud Computing, 1291
IEEE Transactions on Emerging Topics in Comput- 1292

ing, IEEE System, IEEE Network, ACM Transactions on Multimedia Computing, 1293
Communications, and Applications and book chapters in these areas. 1294

1295



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


