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Abstract—Although many programmers write their names
in the comments of a source file, from such comments, it is
unreliable to identify code authors, since the modifications of
many programmers are not recorded. Even if they are recorded in
a code repository, many authors are hidden in revision histories.

The true authors of source files are important in many research
topics. For example, when detecting plagiarism, if the authors
of two source are overlapped, it becomes more challenging to
determine plagiarism than the source files that are written by
individual authors. As it is difficult to determine true authors of
a source file, researchers typically use source files whose authors
are already known (e.g., the source files from Google Code Jam),
but such files are not many and less representative. Meanwhile,
although some empirical studies touch code authors, to the best
of our knowledge, no prior study has analyzed the characteristics
of code authors that are hidden in revision histories. As a result,
many research questions along with code authors are still open.
For example, how many authors does a source file can have, and
what are the proportions of contributions per source file, if they
are written by more than one author?

To answer the timely questions, in this paper, we conducted
an empirical study on code authors that are hidden in revision
histories. To support our study, we implemented a tool called
CODA. By comparing the latest code lines with past commits,
CODA identifies the true authors of all code lines. With its
support, we analyzed 12,092 source files that were written by 506
programmers. Our study answers several interesting questions
concerning code authors. For example, we find that 75.4% source
files are written by multiple authors, and their contributions
follow the famous 80/20 principle. These findings are useful to
understand authors of source files in open source communities.

I. INTRODUCTION

Although the comments of a source file typically record
its author(s) (e.g., @author tags in Java comments), pro-
grammers seldom carefully maintain such comments, and
author comments often refer to wrong authors. To identify
the true authors, researchers [17], [36] have proposed various
approaches. This research topic is known as code authorship
attribution (see Section V for details). Besides this research
topic, the true authors of a source file are important to
various other research topics (e.g., bug report assignments [8],
software forensics [49], and plagiarism detection [44]).

Despite the importance of code authorship, the real authors
of code lines are still largely unknown, and many fundamental
questions along with code authors are still open. For example,
a recent review [36] complains that most approaches assume
that a source file is written by only an author, but source files

in the wild are typically written by multiple programmers.
As another example, most plagiarism detection tools compare
the code similarity to determine plagiarism [11]. Although
this setting fits some scenarios (e.g., detecting plagiarism in
the homework submitted by students), source files in the real
development can be written by intersecting authors, and the
definition of plagiarism shall be reconsidered. In the literature,
researchers often build theories on their own experiences,
instead of solid empirical evidences. For example, Kalgutkar
et al. [36] list the challenges of identifying code authors.
Although we agree that their visions are insightful, they did
not provide any empirical evidences to support their listed
challenges. To deepen the understanding on code authorship,
there is a strong need for an empirical study, but it is
challenging to conduct such a study. When programmers check
out a project, they see the latest versions of source files, but
the authors of source files are often hidden the revision history
of source files.

To meet the timely need, we conducted the first empirical
study on code authors. To assist our study, we implemented a
tool called CODA. It extracts authors and their modifications
from code repositories and matches modifications with the
latest source files to determine the true author of each line.
With CODA, we analyzed 12,092 source files that were written
by 506 programmers. In this empirical study, we explore the
following research questions:

• RQ1. How many commits of an author are modified by
follow-up commits?
Motivation. Some code authors are hidden in file revision
histories, because the added code lines of their commits
are modified by the commits of other authors. To explore
the relevance of our target problem, from the perspective
of commits, we count how many commits of an author
are modified by other commits.
Protocol. To answer this question, we collected the total
commits of an author ct, and the modified commits of the
author cm. After that, we used the ratio, cm

ct
, to explore

modified commits.
Answer. We find that the commits of transient authors
are often either totaly modified or never modified, and
for most other authors, half of their commits are typically
modified by follow-up authors (Finding 1).
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Fig. 1: The revision history of a source file (We anonymized all author names to protect privacy)

• RQ2. How many authors does a source file have?
Motivation. The commits of a file build up the latest
code lines and the true authors of a file. To explore the
impacts of our target problem, from the perspective of
the latest files, we count the number of authors for each
file. In extreme cases, the modifications of an author can
be totally rewritten by other authors. In this research
question, we explore how frequently such cases happen.
Protocol. To answer this question, for each source file, we
identify the real authors of its code lines by comparing
their modified code with the latest code. The added lines
of some programmers are totally rewritten by other pro-
grammers, and such programmers shall not be considered
as real authors. We also identify these hidden authors of
each source file.
Answer. We find that 10% to 60% files have hidden
authors (Finding 2), and 75.4% source files have multiple
authors (Finding 3). Although so many source files have
multiple authors, most files (the medians) are written by
no more than five programmers (Finding 3).

• RQ3. What are the proportions of contributed code lines,
if a source file is written by more than one author?
Motivation. In RQ2, we find that about 75.4% source
files are written by more than one author. When a file
has more than one author, the contributed code lines of
the authors can be quite different. In RQ3, we explore
the distributions of those greatest and lest contributors.
Protocol. To answer this question, for a source file, we
calculate the total code lines of each code author ltotal,
and count its ratio over its all code lines lc.
Answer. We find that the authors of most files follow
the famous 80/20 principle, i.e., 80% of their latest
lines are written by single authors. Although one author
typically writes most code lines of a file, most files have
several code lines that can be contributed by transient
programmers or pair programming (Finding 4).

• RQ4. How many modified lines are hidden?
Motivation. The development cost is also hidden in file
revision histories. The hidden cost is useful to related
research topics (e.g., cost estimation [35]).
Protocol. To answer this question, we count how many
invisible lines a file has. Here, a code line is hidden, if
it is modified by latter commits.
Answer. We find that for most files, there are fewer than

one hidden line behind a visible line, but in extreme cases,
a line can be modified by ten previous lines (Finding 5).
The result show that the hidden lines may not have major
impacts on estimating overall cost, but their impacts on
individual files can be significant.

• RQ5: How do open source projects attract programmers?
Motivation: A health open source project shall attract
programmers. In RQ5, we analyze the attractions.
Protocol. To answer this question, we count lines modi-
fied by authors, and calculate the distribution over time.
Answer: We find indicates that it is more challenge
to attract long-term programmers (Finding 6). In open
source project, most programmers make a commit, and
modify about 30 lines of code, in each day (Finding 7).

II. AN EXAMPLE OF STUDY BACKGROUND

In this section, we use an example to introduce the story
of code authorship, and analyzes its impacts. In read de-
velopment, a file can have a long maintenance history, and
many programmers can contribute its content. The mainte-
nance history of a source file can be obtained by IDEs.
For example, Figure 1 shows the history of a source file,
which is retrieved by Eclipse. While multiple programmers
can contribute to a source file, their contributions can twist
with each other. For example, Figure 2 shows the modification
details of this textual file. Specifically, Figure 2a shows the
createProducer method of the latest file. Although it has
only six lines, these lines are written by two programmers.
Figure 2b shows the updated lines of a commit. This commit
was submitted by Hir*, and it contributed to the first lines of
the method createProducer in Figure 2a. Figure 2c shows
the updated lines of two commits. The two commits were
submitted by Rob*, and they contributed to the other three
lines of the createProducer method.

As shown in this example, even a small method can have a
complicated revision history. The complicated histories can
influence various research topics. For example, researchers
have proposed various approaches to identify the author(s) of a
source file (see Section V for details), and Kalgutkar et al. [36]
complain that most approaches assume that each file has exact
an author. Such approach will fail to identify the true author
of our example, since it is written by multiple authors. As
another example, Bin-Habtoor and Zaher [11] introduce that
some approaches detect copy-and-paste code snippets to detect



1 p r o t e c t e d P e r f P r o d u c e r c r e a t e P r o d u c e r ( . . . ) {
2 P e r f P r o d u c e r r e s u l t = super . c r e a t e P r o d u c e r ( fac ,

d e s t , number , p a y l o a d ) ;
3 r e s u l t . s e t D e l i v e r y M o d e ( Del iveryMode .

NON PERSISTENT ) ;
4 r e s u l t . s e t S l e e p ( 1 0 ) ;
5 re turn r e s u l t ;
6 }

(a) A commit history
1 a u t h o r : Hi r *
2 commit :230 a86c
3 p r o t e c t e d P e r f P r o d u c e r c r e a t e P r o d u c e r ( . . . ) {
4 P e r f P r o d u c e r r e s u l t = super . c r e a t e P r o d u c e r ( fac ,

d e s t , number , p a y l o a d ) ;

(b) A commit of Hir*
1 a u t h o r : Rob*
2 commit : 6 e7e3ab
3 r e s u l t . s e t D e l i v e r y M o d e ( Del iveryMode .

NON PERSISTENT ) ;
4 re turn r e s u l t ;
5 }
6 commit : 6 3 e3f41
7 r e s u l t . s e t S l e e p ( 1 0 ) ;

(c) Two commits of Rob*
Fig. 2: The authors hidden in revisions

plagiarism. In our example, the short method is composed by
multiple authors, and each author contributes only one or two
code lines. As a result, their mentioned approaches may not
effectively detect plagiarism involving our example.

Although the above example illustrate the complexity of
code authors, a single example is insufficient to show the
relevance of this problem, and many questions are still open.
For example, to what degree can a source file be written by
multiple authors, and how are their contributed code lines
twisted? To fully answer these questions, it is desirable to
conduct an empirical study on code authorship. The an-
swers to these questions have far reaching impacts on many
research topics (e.g., bug report assignments [8], software
forensics [49], and plagiarism detection [44]).

It is challenging to conduct this study, since each single
line of source code could be changed, added or deleted by
multiple programmers and the contributions of a programmer
can scatter across many lines of code. To handle this challenge,
we implemented a tool called CODA to extract the accurate
authors of each code line from its revision history. We next
introduce our data set, CODA, and analysis protocol.

III. METHODOLOGY

In this section, we introduce CODA (Section III-A), our data
set (Section III-B), and analysis protocol (Section III-C).

A. CODA

CODA first extracts commit authors and patches from code
repositories, and then matches those patches with the latest
source files to determine code authors.

1. Extracting commit details and patches. We built CODA
on SVNKit [3], a popular library for developing clients of

TABLE I: Subject projects.
Name File LOC Author Commit Delta file

activemq 4,103 701,776 83 10,055 69,997
aries 2,113 288,164 35 4,846 26,517

carbondata 773 185,724 107 3,709 41,221
cassandra 1,650 546,857 214 21,995 90,959

derby 2,712 1,234,091 33 8,130 52,342
mahout 741 177,392 34 3,703 29,434

total 12,092 3,134,004 506 52,438 310,470

code repositories. For each commit, CODA extracts its commit
detail and patch from code repositories. For example, as
shown in Figure 1, we use Eclipse to retrieve the revision
history of CamelConnectionFactory. For each commit of
a source file, code repositories record its commit information
such as its id, message, author, author date, committer, and
committed date. For example, the first row of Figure 1 shows
that the author and the committer of the latest commit is Gar*.
The author and the committer of a revision is typically the
same programmer, but we notice that in some cases, they
are different. CODA considers that the author of revision
is the true programmer of the revision. Besides its commit
information, for each commit of a source file, code repositories
store its changes as a patch. For example, in Figure 1, we
highlight the patch of the latest commit. In this patch, the first
and second rows show the names of the original file and the
modified file, respectively. In this example, the commit does
not change the file name. The third row shows the line numbers
of modified code. In the follow-up lines, “+” denotes added
lines; “-” denotes deleted lines; and other lines are unchanged.
For each source file (f ), we use CODA to extract all the
commits C that modify the file. We next introduce how CODA
determines the authors of f , according to C.

2. Matching patches to the latest source files. As shown
in Figure 1, a patch encodes a modification as an addition (+)
and a deletion (-). As only additions can appear in the latest
files, CODA extracts only additions from patches, i.e., the lines
that start with “+”. For each patch, CODA compares its added
lines with the lines of the latest code to collect their common
lines. Algorithm 1 shows the details of the comparison. Given
the added lines of a commit (L1) and the lines of the latest
version (L2), Line 2 iterates all the lines of L1. If a line appears
in both L1 and L2 (Line 6), the line is added to L′; Line 9
breaks the loop; and Line 2 checks the next line of L1. The
process terminates until L1 reaches its ends. Given L1 and L2

as the inputs, if Algorithm 1 finds that L′ is not empty, CODA
determines that the author of L1 is the author of L′ ⊆ L2.
When a source file has multiple commits, CODA matches the
commits in the order from the newest one to the oldest one. If
a line of the latest version is already matched, CODA ignores
the line in the later matches. As a result, it does not match
superficial lines that accidentally appear in previous patches.

We use CODA to compare each latest source file with past
commits. As shown in Figure 2, CODA is able to determine
the author of each code line. Based on the identified authors of
all code lines, we can answer the questions listed in Section I.



Algorithm 1: the findCodeLineNumber Algorithm
Input:

L1 is the m code lines of a latest source file
L2 is the n code lines that are rebuilt from a patch

Output:
L2 is the code lines with line numbers

1: arr ← new int[m+1][n+1];
2: for i← 1 to m + 1 do
3: for j ← 1 to n + 1 do
4: l1 ← L1.get(i);
5: l2 ← L2.get(j);
6: if l1 = l2 then
7: arr[i][j] ← arr[i−1][j−1] + 1;
8: else
9: arr[i][j] ← max(arr[i−1][j], arr[i][j−1]);

10: end if
11: end for
12: end for
13: m← m− 1;
14: n← n− 1;
15: while m ≥ 1 and arr[m] = arr[m−1] do
16: m← m− 1;
17: end while
18: while m ≥ 0 and n ≥ 0 do
19: l1 ← L1.get(i);
20: l2 ← L2.get(j);
21: if l1 = l2 then
22: l2.line← l1.line;
23: m← m− 1;
24: n← n− 1;
25: else
26: if arr[m][n+1] > arr[m+1][n] then
27: m← m− 1;
28: else
29: n← n− 1;
30: end if
31: end if
32: end while

B. Dataset

Table I shows the data set. Column “Name” lists names
of projects. All the projects are collected from the Apache
foundation [1]. To ensure the reliability of our findings, in our
study, we checked out thousands of commits and analyzed
millions of modified files. As it is infeasible to manually
analyze so many files, we implemented CODA to automate
the process. Although CODA does not involve complicated
analysis, it is built for analyzing the code repositories of
Apache. As a result, in this study, we selected only Apache
projects. However, to ensure their representativeness, we se-
lected subjects from different types of projects such as messag-
ing servers (activemq), OSGi application programming modes
(aries), databases (cassandra and derby), and machine learning
frameworks (mahout). Column “File” lists the number of Java
source files in the latest versions. Column “LOC” lists their
lines of code. Column “Author” lists the number of authors
that appear in commits. Column “Commit” lists the number of
commits. Column “Delta file” lists the number of delta files.
Here, delta files are calculated as deletions+additions+2×
modifications, in that a modification can be considered as a
deletion and an addition.

C. General Protocol

To explore the research questions in Section I, with the
support of CODA, we analyze the data set in Section III-B.
Our analysis protocol is as follows:

Step 1. Extracting commits for source files. All the
projects in Table I maintain their source files on Github. From
their Github code servers, we use CODA to extract all the
commits of each project. For each commit, CODA stores its
old and modified versions of source files in a local directory.
For example, as shown in Table I, CODA extracted 10,055
commits for the activemq project.

Step 2. Identifying the revisions of each code line. Given
the commits of a source file as its input, we use CODA to
identify the author of each code line. CODA determines the
author of a code line by comparing the line with the updated
code lines of all commits. For example, as shown in Figure 2,
Figure 2a shows the latest file, Figure 2b and Figure 2c show
the updated lines of two commits. CODA compared the latest
file with the updated lines to determine the authors of code
lines. During the process, we collected the results to explore
RQs 1, 2, and 4.

Step 3. Identifying the contribution of each author. After
the author of each code line is identified, we used CODA to
rebuild all the updated lines of a programmer. For example,
Figure 2c lists the updated lines that were written by Rob* and
still appear in the latest source files. Based on the contributions
of authors, we explored RQs 3 and 5.

IV. EMPIRICAL RESULT

This section presents our analysis results. More details of
our dataset, and our results are listed on our project website:

https://github.com/gongsiyi/codeauthor

A. RQ1. Modified Commits

1) Protocol: For each commit on a file, we compare its
added lines with the latest file. If one added line does not
appear in the latest file, we consider that the commit is
modified by latter commits. For each project, we use ct to
denote the total commits of an author, and cm to denote the
modified commits of the author. For each author, we use the
ratio, cm

ct
, to denote how many commits of an author are

modified by latter commits. We draw box plots to present the
distribution of modified commits per author.

2) Result: Figure 3a shows the distribution of modifica-
tions. The result shows that the medians are around 80%. This
result indicates that for most authors, 80% of their commits
are modified by latter commits. Figure 3a also shows some
extreme cases. For example, in aries, the commits of some
authors (e.g., Vio*) are all modified, but the commits of some
other authors (e.g., Ala*) are never modified by latter commits.
After some inspection on extreme cases, we find that most
of such commits are written by transient programmers. In
the above example, in total, Ala* made one commit, and
Vio* made four commits. In a project, transient programmers
are often assigned with less challenging or less important
programming tasks. For those tasks, programmers may not
produce bugs, and even if they do, their introduced bugs
may not cause notable consequences. For example, in total,
Krz* made two commits to aries, and the two commits
modified only three lines of code in two test cases. As their

https://github.com/gongsiyi/codeauthor


(a) all the authors

(b) the authors whose commits are more than ten
Fig. 3: The ratios of modified commits

modifications are minor, the two commits are never modified
by latter commits. However, if transient programmers modified
more lines of code, their commits are likely to be modified
by latter commits. For example, in aries, Pat* also made
two commits on two test cases. In particular, in one commit,
Pat* implemented a static class, and in another commit, he
implemented its most lines of code. As the two commits
modified many lines of code, and their modified lines are
further modified by latter commits.

We next analyze the commits of those core programmers. In
particular, we analyze programmers who made more than ten
commits, in that transient programmers made fewer commits
than others. Figure 3b shows the distribution of the remaining
authors. We find that the lengths of all the boxes in Figure 3b
become shorter than those of Figure 3a. This result indicates
that more core authors have modified commits than transient
authors, but the commits of fewer core authors are totally
modified than those of transient authors. Our observations lead
to our first finding:

Finding 1. The commits of transient authors are often
either totally modified or never modified, but the commits
of core authors are more stable. For most core authors, 80%
of their commits are modified by latter commits.

As many commits are modified, it is likely that the com-
mits of a programmer are all modified by others. We next
investigate its impacts on the identification of code authors.

B. RQ2. Multiple Authors

1) Protocol: If a programmer made a commit on a file, the
prior approaches [40] determine that the programmer is an
author of the file. As a comparison, we use their strategy to
determine the authors of a file. We refer to such authors as the
total authors of a file. However, even if a programmer appears
in the total-author list of a file, it can be unreasonable to

determine that the programmer is an author of the file, because
all the commits of the programmer can be totally rewritten by
other authors. If a programmer appears in a commit of a file,
Meng et al. [40] determine that the program is an author of the
file. Although the strategy is more accurate that the authors
under the @author tags, in Section IV-A, Finding 1 shows that
for most programmers, half of their commits are modified by
latter ones. We used CODA to compare the latest files with
the modifications of past commits.

As shown in Figure 2, CODA is able to determine the true
author of each code line. For each source file, based on the
identified author of each code line, we calculate the number of
real authors. To understand the impacts of modified commits,
we use CODA to identify real authors of all files. Here, if at
least one line of her modifications appear in the latest version
of a file, we consider the programmer as a real author of the
file. When counting real authors, we order the commits of a file
in the chronological order. If a code line already appears in a
commit, we do not compare it with other commits. Some code
lines can be quite common (e.g., braces). Our strategy does
not identify superficial authors who made only such common
modifications as real authors. Figure 5b shows the distributions
of real authors. Comparing with Figure 5a, we find that except
aries, the medians of all the projects decrease. This result
indicates that modified commits influence the identification
of code authors, and all the projects are influenced. To further
understand the influence, for each file, we calculate its ratio
of real author

total author . Here, the total authors of a file are the authors
that appear in the commits of the file. We draw plots to show
the distributions.

2) Result: We find that in some cases, the commits of
a programmer are totally rewritten by other programmers.
For example, in activemq, the class, JMSMappingOutbound-
Transformer, was created by Timothy Bish. After it was
created, another programmer, Robert Gemmell, fixed two bugs
of this file (AMQ-5637 and AMQ-5592). The fixed file is still
buggy. When Timothy Bish fixed latter bugs (e.g., AMQ-5648),
he revised the modifications of Robert Gemmell. As a result,
none of Robert Gemmell’modifications appears in the latest
version of this file, and he is in fact not an author of this file.
However, by the criteria of the prior studies (e.g., [40]), Robert
Gemmell is still a valid author of this file.

Figure 4 shows the distributions of such cases. This result
shows that the distributions vary among different projects.
As one extreme case, in aries, about 10% files have authors
whose modifications are totally rewritten by other authors,
but as another extreme case, the percent is about 60% for
mahout. When a ratio of a file is less than 100%, at least one
programmer is not a real author. A lower ratio indicates that
more authors are not real. Based on where the plots turn down,
for activemq, cassandra, derby, and mahout, about half of their
files have authors whose modifications are totally rewritten.
The plots of all the projects end at a low ratio of about 0.2.
This result indicates that for all the projects, there are some
extreme cases. In such cases, programmers rewrite many lines
of files, and the modifications of about 80% authors are totally



(a) activemq (b) aries (c) carbondata

(d) cassandra (e) derby (f) mahout
Fig. 4: The ratios of hidden authors

(a) the total authors

(b) the real authors

Fig. 5: The number of authors

rewritten. The observations lead to another finding:

Finding 2. Although some programmers appear in the
commits of a file, they shall not be considered as a true
author of the file, because their modifications do not appear
in the latest files. The percents of such authors varies from
10% (aries) to 60% (mahout).

We calculate the percents of files that are written by multiple
authors. The results are activemq (75.6%), aries (46.3%),
carbondata (83.7%), cassandra (77.3%), and derby (88.3%).
In total, 75.4% source files are written by more than one
programmer. Figure 5a shows the distributions of authors
per file. In some extreme cases, a file can have more than
30 authors. However, most maximum (the largest data point
excluding any outliers) are below ten, and the medians are
around five. The result leads to a finding:

Finding 3. In total, 75.4% source files are written by
multiple programmers, and most files have five authors.

In summary, we find that 75.4% files are written by a
team of authors, and most teams have five programmers. The
modifications of a programmer can be totally rewritten by
other programmers, which influences from 10% files of aries
to 60% files of mahout.

C. RQ3. Author Contributions

1) Protocol: In Section IV-B, we find that a notable por-
tion (75.4%) of files are written by multiple authors, and
the modifications of an author can be totally rewritten by
other authors. The real authors of a file can have different
contributions to the file. In this section, we use the numbers
of code lines to measure the contributions of real authors.
A commit on a file can delete lines (ld) and add lines (la).
For each author, we compare all the added lines (la) of her
commits with the the latest version of a file, and count the
number of the common lines as lc. As we did in Section IV-B,
when counting lc of real authors, we rank the commits of a
file in the chronological order. If a code line already appears
in a commit, we do not compare it with previous commits. If a
file has ltotal lines of code and an author has lc common lines,
we calculate the contribution of the author as lc

ltotal
. For each

file with multiple authors, we calculate the contributions of
all its authors. Among the authors, we call the one who write
the most lines of code as the greatest contributor, and the one
who write the fewest lines of code as the lest contributor. We
draw box plots to show the distributions of contributions for
the greatest contributors and least contributors.

2) Result: Figures 6a and 6b show distributions of the
greatest contributors and the lest contributors, respectively. In
Figure 6a, the medians are around 0.8. This result indicates
that for most files, a single author (i.e., the greatest contributor)
writes 80% lines of code. This contribution shows that the
contributors of authors follow the famous 80/20 principle [27].
In Figure 6b, the medians are fewer than 0.05. This result
shows that most files are touched by a programmer, and



(a) the greatest contributor

(b) the lest contributor

Fig. 6: The contributors of files

their added lines are fewer than 5% of their total lines of
code. Zhou and Mockus [61] report that open source projects
have many transient programmers. Such programmers can be
detected as the least contributors, because their added lines are
few. Meanwhile, we notice that all the projects of Figure 6b
have many outliers. In the modern software development, pair
programming has been widely used [55], and researchers [15]
are advocating this practice in distributed environments (e.g.,
open source projects). The outliers may be a side evidence for
the practice of pair programming in open source communities,
because in such a programming paradigm, two programmers
typically make equivalent contributions to a file. Our observa-
tions lead to the following finding:

Finding 4. The contributions of authors follow the famous
80/20 principle, and most files have minor modifications,
which can be contributed by transient programmers or the
practice of pair programming.

D. RQ4. Invisible Added Code Lines

1) Protocol: Although each commit can add some lines
of code to a file, an added code can be modified by latter
commits. As a result, the latest version of a file has fewer lines
of code than those added lines of past commits. Although such
lines are invisible, they reflect the true effort of implementing
and maintaining a file.

For each file, we calculate the sum of added lines in all its
past commits, and denote the sum as ls. If the latest version of
the file has ltotal lines of code, we calculate the ratio, ls

ltotal
,

to measure how many invisible added code lines a file has.
2) Result: Figure 7 shows the distribution of the ratios. The

medians of all the projects are between one and two. This
result indicates that for most files, their total lines of code
do not change much. However, as shown in Figure 7, all the

Fig. 7: The ratios of modifications

projects have many outliers. In some extreme cases, a file can
have ten times more added lines than what is visible in the
latest versions. For each project, we ordered their files in the
descending order of the ratio, and manually inspected the top
five files. We identified four causes:

1. Functions are moved (40.0%). For example, in ac-
tivemq, the AmqpProtocolConverter interface was initially
a concrete class. After its implementation code was moved to
its subclasses, its current version has much fewer lines, and
the ratio becomes high.

2. Functions are rewritten (20.0%). For example, in derby,
most commits of the TriggerOldTransitionRows class
added only minor lines, but to support BLOB and CLOB types
(DERBY-438), the class is totally rewritten, which leads to a
high ratio.

3. Test code is changed (10.0%). In total, three test cases
are intensively modified, and the changes can be caused by
requirement changes.

4. Constants are changed (6.7%). For example, in derby,
the MessageId interface stores error ids, and the ids were
constantly changed over time.

We find no patterns for the remaining cases. Most cases
have a long maintenance history, and their added lines were
accumulated over time. Our observations lead to a finding:

Finding 5. For most files, the added lines over total visible
lines are between one and two. However, there are some
extreme cases, in which the ratios are more than ten.

E. RQ5: Attraction to Programmers

1) Protocol: We use three metrics such as programming
days, commits per day, and modified lines per day to measure
the attraction of open source projects. For each programmer,
we collect the dates (d1 and d2) of the first commit and the
last commit. We calculate the programming day (day) of a
programmer as d2 − d1. For each programmer, we collect all
her commits (commit), and calculate her commits per day
as commit

day . We collect all the commits of a programmer, and
calculate the modified lines of a commit as the sum of its
added lines and deleted lines. Here, a modification is counted
as a deletion and an addition. For each programmer, we count
her total modified lines (tl), and calculate her modified lines
per day as tl

day . We draw box plots to show the distributions
of authors, as far as the three metrics are concerned.

2) Result: Figure 8a shows the distributions of program-
ming days. The medians of aries, derby, and mahout are more



than those of activemq, carbondata, and cassandra. For aries,
derby, and mahout, most authors have about 400 programming
days, but for the other three projects, most authors have fewer
than 100 programming days. Table I shows that activemq,
carbondata, and cassandra have more programmers than aries,
derby, and mahout. We count the programmers whose pro-
gramming days are more than 100. The results are activemq
(36), aries (27), carbondata (47), cassandra (83), derby (25),
and mahout (22). In total, 47.4% programmers have more than
100 programming days, but the percents are lower for those
crowded projects, i.e., activemq (43.4%), carbondata (43.9%),
and cassandra (38.8%). As a comparison, the percents of aries,
derby, and mahout are 77.1%, 75.8%, and 64.7%, respectively.
Although the long-term programmers of activemq, carbondata,
and cassandra are still more than those of aries, derby, and
mahout, the differences are less significant. The observation
leads to another finding:

Finding 6. Although some projects attract more program-
mers than others, it is more difficult to attract long-
term programmers. The three projects such as activemq,
carbondata, and cassandra attract more programmers than
the other three projects, but in activemq, carbondata, and
cassandra, about 30% more programmers are not long-term
i.e., having fewer than 100 programming days.

Figure 8b shows the distributions of commits per day, and
Figure 8c shows the distributions of modified lines per day.
The medians are consistent, and lead to a finding:

Finding 7. Most programmers make a commit, and modify
about 30 lines each programming day.

In summary, it is more difficult to attract long-term pro-
grammers, and most programmers make limited changes each
programming day. Our result reflects the state of the practice
for open source development, but it is not an indicator of the
inefficiencies of open source development. We further discuss
this issue in Section VI.

F. Threat to Validity

The threats to internal validity include that a programmer
can wrongly fill in the two columns. As most Apache projects
are carefully maintained, such errors shall be rare. The threat
could be reduced by manually inspecting our identified au-
thors. The threats also include that a programmer can use
different names when committing changes. This threat could
be reduced by the data sanitization steps [13].

The threats to external validity include our subjects. Al-
though we analyzed thousands of files of six popular projects,
they are limited and all in Java and all the projects belong to
Apache. The threat could be reduced with more subjects [43].
However, our major findings may not change much, since we
have selected different types of projects.

V. CODE AUTHORSHIP ATTRIBUTION

To better interpret our findings, in this section, we introduce
the research on code authorship attribution. Identifying the
authors for a piece of code has been a long research topic,

(a) programming days

(b) commits per day

(c) modified lines per day
Fig. 8: The attractions to authors

and this research topic is often called as code authorship
attribution. Table II shows some representative approaches. We
include Halstead [29], since it is first one to identify authors of
source files as reported by Kalgutkar et al. [36]. To show the
state of the art, our other selected approaches are published
after 2010.

In Table II, Column “Input” lists the input data of code
authorship attribution. Most approaches (e.g., [16]) analyze
source files through static analysis. Besides static analysis,
a few approaches (e.g., [32]) dynamically execute compiled
source files to analyze their details. As an interesting re-
search topic, researchers (e.g., [45]) have proposed approaches
to identify authors of binaries. For example, Rosenblum et
al. [45] use the Paradyn tools [4] to analyze compiled C/C++
code.

Column “Feature” lists extracted features. The prior ap-
proaches mainly extract two types of features such as metrics
and ngrams. A software metric is a measurable attribute of
a program. For example, two extracted features of Yang et
al. [56] are as follows:

1) The ratio of blank lines to code lines
2) The ratio of comment lines to code lines
In natural language processing, ngram models are widely

used to identify the author of a text [19]. As Hindle et al. [33]



TABLE II: The typical approaches of code authorship attribution.
Author Year Input Feature Technique Dataset

Halstead [29] 1972 source code metric statistic 5 small programs
Hayes and Offutt [32] 2010 source code metric statistic 15 programs by profession-

als and 60 by students
Rosenblum et al. [45] 2011 binary n-gram svm and k-means 2,579 GCJ programs and

203 from a course
Bandara and Wijayarathna [10] 2013 source code metric logistic regression 5 programs from Source-

Forge
Chouchane et al. [18] 2013 binary n-gram k-nn classifier 7 morphing engines
Caliskan et al. [17] 2015 source code metric neural network GCJ programs by 1,850 au-

thors
Alsulami et al. [7] 2017 source code AST neural network 700 GCJ files and 200

GitHub files
Yang et al. [56] 2017 source code metric neural network 3,022 GitHub source files

Caliskan et al. [16] 2018 source code n-gram random forest GCJ programs by 100 au-
thors

Abuhamad et al. [5] 2020 source code word2vec and TF-IDF RNN with random forest 26,607 GitHub source files

show that programming languages and natural languages share
similarities, some approaches (e.g., [16]) use ngram models to
capture the habits of programmers. For example, Caliskan et
al. [16] extract a bigram, which indicates that func is followed
by if. Some approaches (e.g., [7]) bypass the extraction of
metrics or ngrams, and take ASTs or CFGs directly as their
inputs. These approaches typically rely on existing techniques
to implicitly extract metrics or ngrams. For example, Alsulami
et al [7] use a recurrent neural network [23] to analyze ASTs,
and such a technique extracts code features as ngrams.

Column “Technique” lists the techniques that identify au-
thors based on extracted features. The prior approaches are
roughly divided into two research lines. The first line of
approaches creates hypotheses of distinguishing authors, and
use statics testing to validate whether their hypotheses hold.
For example, Hayes and Offutt [32] report that three metrics
are significant discriminators for identifying programmers: (1)
the average occurrence of operands, (2) the average occurrence
of operators, and (3) the average occurrence of constructs. The
other line of approaches reduces the problem of identifying
authors to clustering or classification problems, and use data
mining or machine learning techniques [58] to resolve the
problems. For example, Rosenblum et al. [45] use svm and
k-means, and Caliskan et al. [17] use neural networks.

In early years, researchers often evaluate their approaches
on small programs. For example, Halstead [29] list all the
evaluated five programs. Tennyson and Mitropoulos [51] select
code samples from textbooks because they can determine the
authors of books as the authors of code samples. As shown
in Table II, some recent approaches (e.g., [45]) use GCJ
programs [2]. GCJ is the abbreviation of Google Code Jam. It
is a code computation that is hosted by Google. Although
the author of a GCJ program is recorded, as criticized by
Kalgutkar et al. [36], in the GCJ benchmark, each author
typically has quite limited code samples, and its languages
are limited to several popular ones (e.g., C++). Researchers
recently use source files of open source projects as their
benchmarks. For example, as shown in Table II, Yang et
al. [56] collected 3,022 files from Github.

VI. INTERPRETATION OF OUR FINDINGS

In this section, we interpret our findings:
1. The challenges of identifying authors. Findings 2

and 3 show that most source files are written by multiple
code authors. Based on our results, we briefly discuss some
potential opportunities and challenges of identifying multiple
code authors. First, as shown in Figure 2, even a short
method can have multiple authors, and the modifications of
a programmer can be discontinuous. Second, Finding 4 shows
that the contributions of authors are quite different, and some
programmers are transient, they only write a small portion
of lines. The above findings show that researchers encounter
the data imbalance problem when identifying real authors.
Third, as shown in Figure 2, two lines are added by the
same programmer, their commits are different and the time
interval between the commits can be quite long. Kalgutkar et
al. [36] point out that the code style of a programmer can
evolve over time. Even if two lines are written by the same
author, their styles can be different. Fourth, Finding 3 shows
that even if a programmer is the author of a file’s commits,
she may not be an author of the file, since all her added
code are modified by other programmers. The above findings
show that researchers encounter the uneven data distribution
problem when identifying real authors. We have released
our dataset on our website. With more advanced statistical
analysis techniques (e.g., Bayesian analysis [24]), researchers
can derive more beneficial findings.

2. The invisible authors of code lines. Finding 5 shows that
for a file, some lines of invisible, because they only appeared
in past versions. Typically, invisible lines are as many as or
even more than visible lines. For source files, especially for
those extreme cases, the relation between the visible code
and the invisible code can be described as the tip over an
iceberg. Although programmers work on the tip, the stories
under the water are often more revealing and interesting. For
example, Kim et al. [37] analyze how clones evolve over
time. Compared with clones in the latest source files (the
tip), their study reveals the evolution of clones (the iceberg),
which present more interesting details (e.g., why a clone is
created, and how a clone changes from one type to another).



Besides clones, the phenomenon of the tip over an iceberg can
influence many other research topics. For example, researchers
have proposed various metrics to measure the complexity of
code (e.g., the cyclomatic complexity density [25]). Compared
with metrics on latest files, researchers (e.g., [30]) have
proposed metrics that are calculated from code changes, which
can be more reasonable to measure the complexity of code. As
another example, it has been a hot research topic to estimate
the development cost of a software [14]. Typically, these
approaches use lines of code to measure the development
cost. Figure 7 shows that there are many invisible lines of
code behind those visible ones, and ratio can be high. Instead
of those visible lines, those invisible lines can be a better
indicator of the development cost. After CODA identifies those
hidden lines, other researchers can evaluate and modify their
cost prediction approaches accordingly.

3. The comparison with commercial projects. Open
source and commercial software are two major paradigms for
developing software. Researchers [41] have conducted empir-
ical studies to compare the efficiency of the two paradigms.
Figure 8 shows the activities of programmers in open source
development, and some numbers look low. However, our
results are not indicators for the efficiency of either paradigm.
Indeed, in the development of commercial software, some
roles (e.g., testers) may not write many lines of code either.
In addition, in different stages of development, programmers
typically make different numbers of commits. Our results
show the averages, but we do not consider their development
stages. Finally, as most programmers are volunteers in open
source development, they may work on weekends. As a result,
when comparing with commercial development, the activities
of open source development shall be adjusted.

VII. RELATED WORK

Besides the code authorship attribution, our work is related
to the following research topics:

The analysis on code ownership. As defined by Hattori et
al. [31], the ownership of a programmer on a file quantifies
the amount of knowledge the programmer has on this file.
Greiler et al. [26] mine the relation between code ownership
and software quality. Diaz et al. [21] use code ownership to
assist the recovery of links between source files and high-
level designs (e.g., use cases). Other researchers [12], [52]
analyze the relationship between code ownership and software
quality. The concepts of code owners and code authors are
related. We notice that some approaches use similar techniques
to determine the owner of a file. For example, Corley et al. [20]
extract all the commits on a file and add all their authors to
the owners of the file. Their strategy is identical to Meng et
al. [40]. As a result, most criticisms on identifying authors
still hold on the identification of code owners. In our study,
we propose CODA to extract accurate authors of source files,
whose results can be also useful to identify code owners.

The empirical studies on commits. Researchers have
conducted various empirical studies on commits. Guzman et
al. [28] analyze the emotion changes of commit messages.

Alali et al. [6] analyze what is a typical commit (e.g., how
many files are added in a commit). Tufano et al. [53] analyze
the factors of a commit that can introduce bugs. Tufano et
al. [54] show that many commits are no longer compilable,
when they are checked out. Zhong and Su [60] analyze to
what degree bug-fixing commits overlap with previous ones.
Zhong and Meng [59] analyze the repetitiveness of bug-fixing
commits. Eyolfson et al. [22] analyze the correlation between
bugs and commits. Song et al. [48] analyze the commits that
are related to workarounds. Our study analyzes commits from
another perspective of commits, their authors, which are not
explored by the prior studies.

Identifying the expertise of developers. As advocated by
Mei and Zhang [39], researchers have learnt models from
large scale software engineering data to identify experts.
Matter et al. [38] build a term-to-developer matrix with word
frequencies. Moin et al. [42] use an n-gram algorithm on the
granularity of characters. Tamrawi et al. [50] leverage the
fuzzy set theory to reduce the negative effect brought by less
discriminative words. Shokripour et al. [47] report that more
recent activities have higher impacts on the expertise of a
developer. Based on this observation, they design a time-based
approach to determine experts. Zhang et al. [57] construct
a heterogeneous network from bug reports, and search the
network for experts. Baltes and Diehl [9] survey the criteria of
experts, and test to what degree such criteria hold. Researchers
also identify experts from source files and commits. Hossen
et al. [34] report that if a programmer appears in the code
comments of a file, the programmer is often an expert to fix
its bug. Servant et al. [46] identify experts by their changes
in commits. The findings of our empirical study can be useful
to determine the expertise of developers.

VIII. CONCLUSION AND FUTURE WORK

The authors of source files are important in many applica-
tions, but they are poorly documented in source code. Even
if they are recorded by code repositories, the modifications of
code authors are often hidden in file revision histories. As
a result, many research questions along with code authors
are still open. To deepen the knowledge on code authors,
we conduct an empirical study and explore open questions
concerning code authors. We summarize our results into seven
findings, and interpret them from three perspectives.

In future work, we plan to conduct in-depth investigations
on more challenges of identifying authors and their author
stories behind source files. In addition, due to the availability
of data sources, we analyzed only open source projects in this
study, but we plan to investigate the difference between open
source and commercial software projects, and we can thus
draw more general conclusions.
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