
Breeze: A Modeling Tool for Designing, Analyzing,
and Improving Software Architecture

Luxi Chen, Linpeng Huang, Hao Zhong, Chen Li, Xiwen Wu
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

{leen1988, lphuang, zhonghao, lcroy, wuxiwen}@sjtu.edu.cn

Abstract—One of the key challenges in the software engineer-
ing lies in requirement engineering. As an important technique
for modeling and analyzing requirements, software architecture
has been intensively studied in recent years. Although various
modeling tools have been proposed in both academy and industry,
these tools typically provide limited support for analyzing non-
functional requirements at architecture level. To address this
problem, in this tool demo, we present a tool, called Breeze,
that models, analyzes, and improves software architecture, with
an emphasis on its non-functional requirements. In particular,
Breeze has three key modules: (1) a modeling module that
facilitates the modeling for software systems, (2) an analysis
module that verifies non-functional requirements (e.g. safety,
reliability and correctness) at the architecture level, and (3) a
reconfiguration module that allows users to repair defects or to
further improve architectures.

I. INTRODUCTION

In practice, requirements can easily become incomplete, in-
consistent, and ambiguous, and such poor-quality requirements
have a critical negative impact on the quality of software [9].
As an important way to improve the quality of the software
system, software architecture has been intensively studied, but
there is still adequate space for improvement. For example,
Schneider et al. [8] propose Unified Requirements Modeling
Language (URML) that supports elicitation of both functional
and non-functional requirements. Pandey [7] complains that
URML cannot describe software at the architecture level,
since it is derived from Unified Modeling Language (UML).
Ameller et al. [1] propose ArchiTech that suggests alternative
architectural decisions. Although their tool can improve some
non-functional requirements, their suggestions may be not ful-
ly reliable, since their tool does not have a solid mathematical
foundation. Considering the above limitations, Xiao et al. [10]
admit that there is still a strong need for better software
architecture tools, especially for analyzing NFRs (e.g., safety,
reliability, and correctness).

As pointed out by Clements [4], software architecture allows
understanding impacts of requirements before implementation.
From an architecture of a software system, it is feasible
to determine to what degree the software system satisfies
NFRs. The architecture-level analysis can detect defects at the
design phase. If such defects are found, it reduces the cost of
developing a software system, since it is less expensive to fix
defects at the early phase of software development.

In this tool demo, we present our Breeze tool. It supports our
architecture description language, Breeze/ADL [6], and well

Architecture Modeling

Module

Breeze

Breeze/ADL

specifications

Architecture Description Language

Breeze/ADL

mapping Left Hand

Side Rule

Reconfiguration Rules

Breeze/ADL Productions

Internal Representations

Visualization

View

Replaced

by

Left Hand

Side Rule

Internal Representations

Correctness

Analysis

Safety

Analysis
Reliability

Analysis

Architecture Analysis

Module

-

<interact>
Architecture

Reconfiguration Module<interact>

Element

Editor

Element

Parser -

TrustConfiguration

Meta-model Editor

Analysis

Plugin

Rule

Editor

Rule

Parser

Rule

Executor

Fig. 1. The overview of Breeze.

integrates with existing NFR analysis tools. As it is based on
the Eclipse framework, it is compatible with the state-of-the-
art UML. Breeze has the following key novel features:

• Breeze supports both modeling and analyzing require-
ments at the architecture level. It allows users to model
NFRs, and it supports three NFR analysis such as cor-
rectness analysis, safety analysis, and reliability analysis.

• Breeze allows users to repair defects in their designed
architectures by defining reconfiguration rules. The mech-
anism allows users to further improve their architectures
based on their analysis results.

Breeze is an open source tool, and more information can be
obtained from https://github.com/BreezeCSA/Breeze.

II. TOOL DESCRIPTION

Figure 1 shows the overview of Breeze, and it consists of
the following three key modules.
Architecture modeling module. Breeze models architectures
of software systems with Breeze/ADL [6]. Breeze/ADL is an
XML-based architecture description language, which specifies
the properties of software system in terms of components, con-
nectors and ports. It can model deployment architectures, but is
not limited to, since its XML-schema can be easily extended.
For example, Li et al. [5] extend Breeze to model software
systems in the big data era. Figure 2 shows the screenshot
of Breeze. It has a GUI that allows users to define software
architecture feature elements (e.g., components, connectors,
and links), through the corresponding icon buttons.
Architecture analysis module. For each designed architec-
ture, Breeze generates a meta-model based on the specifica-



Fig. 2. The screenshot of Breeze.

tions in Breeze/ADL. The meta-model, called TrustConfigu-
ration, focuses on NFRs, and it captures experience data and
domain knowledge of requirement experts. The current version
of Breeze supports the following analysis:

• Correctness analysis. Generating model checking spec-
ifications through Breeze/ADL to detect deadlock or
inconsistency problems, with the support of NuSMV [3].

• Safety analysis. Weaving safety elements defined in re-
quirements into Breeze/ADL model and identifying and
prioritizing possible failure events with fault tree analysis
[2], minimum path analysis, and cut set analysis.

• Reliability analysis. Mapping Breeze/ADL model to a
discrete-time Markov Chain model to predict the relia-
bility of the architecture.

The analysis results are useful to further improve the quality
of software architecture.
Architecture reconfiguration module. Breeze allows users
to repair defects in their architectures. To achieve this, Breeze
implements a reconfiguration mechanism in Breeze/ADL Pro-
ductions [6]. A Production is divided into two parts - the left
hand side (LHS) rule and the right hand side (RHS) rule. Both
LHS and RHS are Breeze/ADL specifications, and defined by
users. The LHS rule presents the precondition and the RHS
rule presents the results. As shown in Figure 1, this module
compares the LHS rule with architectures, and replaces found
matches by the RHS rules. In this way, if an NFR problem is
found, they can fix the problem and improve the architecture
automatically.

III. CONCLUSION AND FUTURE WORK

In this paper, we introduce the Breeze that models, analyzes,
and improves architectures of software systems. In the future,
we will design meaningful graphical symbols to represent
architectural modeling elements. We will also make efforts
to implement source code generation from architectures to

facilitate the development. Furthermore, we plan to evaluate
the effectiveness of Breeze in a large scale industrial setting,
and the results may help us understand to what degree our
tool improve existing models.

ACKNOWLEDGMENT

This paper was supported by the National Natural Science
Foundation of China under Grant No.91118004, 61232007
and the Innovation Program of Shanghai Municipal Education
Commission (No. 13ZZ023).

REFERENCES

[1] D. Ameller, O. Collell, and X. Franch. Architech: Tool support for nfr-
guided architectural decision-making. In Proc. 20th RE, pages 315–316.
IEEE, 2012.

[2] L. Chen, L. Huang, C. Li, L. Wu, and W. Luo. Design and safety
analysis for system architecture: A breeze/adl-based approach. In Proc.
38th COMPSAC, pages 261–266, 2014.

[3] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In Proc. 14th CAV, pages 359–364,
2002.

[4] P. Clements. Software architecture in practice. PhD thesis, Software
Engineering Institute, 2012.

[5] C. Li, L. Huang, and L. Chen. Breeze graph grammar: a graph grammar
approach for modeling the software architecture of big data-oriented
software systems. Software: Practice and Experience, 2014.

[6] C. Li, L. Huang, L. Chen, and C. Yu. Breeze/ADL: Graph grammar
support for an XML-based software architecture description language.
In Proc. 37th COMPSAC, pages 800–805, 2013.

[7] R. Pandey. Architectural description languages (ADLs) vs UML: a
review. ACM SIGSOFT Software Engineering Notes, 35(3):1–5, 2010.

[8] F. Schneider, B. Bruegge, and B. Berenbach. A tool implementation
of the unified requirements modeling language as enterprise architect
add-in. In Proc. 21st RE, pages 334–335, 2013.

[9] A. Van Lamsweerde. Requirements engineering in the year 00: A
research perspective. In Proc. 22nd ICSE, pages 5–19, 2000.

[10] L. Xiao, Y. Cai, and R. Kazman. Titan: a toolset that connects software
architecture with quality analysis. In Proc. 22nd FSE, pages 763–766,
2014.


