
How Developers Optimize Virtual Reality
Applications: A Study of Optimization Commits in

Open Source Unity Projects
Fariha Nusrat

Department of Computer Science
University of Texas at San Antonio

fariha.nusrat@my.utsa.edu

Foyzul Hassan§

Department of Computer and Information Science
University of Michigan-Dearborn

foyzul@umich.edu

Hao Zhong§

Department of Computer Science and Engineering
Shanghai Jiao Tong University

zhonghao@sjtu.edu.cn

Xiaoyin Wang§

Department of Computer Science
University of Texas at San Antonio

xiaoyin.wang@utsa.edu

Abstract—Virtual Reality (VR) is an emerging technique
that provides immersive experience for users. Due to the high
computation cost of rendering real-time animation twice (for
both eyes) and the resource limitation of wearable devices, VR
applications often face performance bottlenecks and performance
optimization plays an important role in VR software develop-
ment. Performance optimizations of VR applications can be very
different from those in traditional software as VR involves more
elements such as graphics rendering and real-time animation.
In this paper, we present the first empirical study on 183 real-
world performance optimizations from 45 VR software projects.
In particular, we manually categorized the optimizations into
11 categories, and applied static analysis to identify how they
affect different life-cycle phases of VR applications. Furthermore,
we studied the complexity and design / behavior effects of
performance optimizations, and how optimizations are different
between large organizational software projects and smaller per-
sonal software projects. Our major findings include: (1) graphics
simplification (24.0%), rendering optimization (16.9%), language
/ API optimization (15.3%), heap avoidance (14.8%), and value
caching (12.0%) are the most common categories of performance
optimization in VR applications; (2) game logic updates (30.4%)
and before-scene initialization (20.0%) are the most common life-
cycle phases affected by performance issues; (3) 45.9% of the
optimizations have behavior and design effects and 39.3% of
the optimizations are systematic changes; (4) the distributions
of optimization classes are very different between organizational
VR projects and personal VR projects.

Index Terms—Empirical Study, Virtual Reality, Performance
Optimization

I. INTRODUCTION

Virtual reality (VR) techniques [24] have provided revolu-
tionary user experience in various application scenarios (e.g.,
training, education, product / architecture design, gaming,
remote conference / tour). According to a report from Mordor
Intelligence [13], the market of virtual reality is valued at
11.52 billion dollars in 2019, and is expected to grow by

§Corresponding Authors

48.7% per year. While the majority of the VR market is still on
hardware, the market size of VR software is estimated to reach
1.9 billion dollars in 2019 [16], with thousands of apps being
developed and uploaded to Google Play [9], Apple Store [1],
and Oculus Market [14]. These apps having been downloaded
by more than 171 million users from all over the world [22].

Compared with traditional GUI-based software applications,
VR software often consumes much more computation re-
sources due to their complicated real-time animations and
the double rendering requirements (i.e., rendering twice for
both eyes at the same time) [23]. Furthermore, VR devices
often have relatively limited computation resources due to
their wearable nature, and their performance downgrade often
causes more severe consequences (e.g., dizziness and motion
sickness caused by low frame rates and in-continuous anima-
tions) than traditional software applications [51]. As a result,
performance optimization plays a very important role in VR
software development, and performance defects are of high
priority to be repaired as soon as possible [23], [27].

While there have been many empirical studies [30], [34],
[39], [47], [57] on general / mobile performance bugs and
optimizations to understand their common patterns and give
suggestions to developers / researchers, there are few studies
on VR performance optimizations (e.g., [36]), and thus the
understanding of them is very limited. In particular, factors
affecting VR performance can be very different from those
affecting traditional software performance, because VR ap-
plications have rich real-time animations, extensive usage of
GPU, and high impacts of asset / scene design (besides source
code) on rendering costs.

To deepen the understanding on VR performance optimiza-
tions, in this paper, we present an exploratory study1 on 183
performance optimizing changes in 45 actively maintained

1See our data set at: http://sites.google.com/view/vroptstudy2020/

1

open source VR projects from UnityList [21], the largest on-
line repository of open-source VR software projects based on
Unity. We believe this scope of subject selection is reasonable
because (1) Unity dominates VR development with over 60%
market share according to multiple sources [19], [20], and (2)
Unity, itself open-source, nurtures a large VR community with
thousands of open-source projects (i.e., UnityList).

In our study, we first applied a keyword search on the
version history of all actively maintained software projects (in
UnityList) which have at least 100 code commits. The keyword
search found 609 code commits as potential performance
optimizations. Two of authors manually inspected each of
the 609 code commits independently to identify performance
optimizations, and further analyzed the code changes, the
type, and the root cause of each performance optimization.
The following reconciliation among authors confirmed 183
performance optimizing changes. It should be noted that one
code commit may contain multiple logic code changes (each
of which can be either performance optimizing change or
not), so one performance optimizing change may not cover all
file revisions in its corresponding code commit, and multiple
performance optimizing changes may come from the same
commit. After that, we further applied static call-graph anal-
ysis and code-asset dependency analysis to the performance-
optimizing changes to precisely answer our research questions.

Our study mainly tries to answer the following six research
questions and we briefly summarize our major findings below
as their answers given by the study.

• RQ1: What are the major categories of performance
optimizations in VR software projects?
Motivation. The answers will present an overview of VR
performance optimizations.
Answer. Our findings show that the top five categories
of optimizations are: (1) graphics simplification (24.0%),
(2) rendering optimization (16.9%), (3) language feature
/ API optimization (15.3%), (4) heap avoidance (14.8%),
and (5) value caching (12.0%), among which (1), (2),
and (4) are not reported in prior studies on general
performance bugs and optimizations.

• RQ2: Which life-cycle phases of VR software are more
affected by performance issues?
Motivation. The answer is useful on allocating resources
for VR performance optimizations.
Answer. Our findings show that game-logic updates,
before-scene initialization, and game-object initialization
are mostly affected life-cycle phases of VR scenes, af-
fected by 30.4%, 20.0%, and 10.4% of the 135 source-
code-revising optimizations, respectively.

• RQ3: How complex are performance optimizations in VR
software projects?
Motivation. The answers reveal the complexity of han-
dling VR performance optimizations.
Answer. Our findings show that 70 (38.3%) of the 183
performance optimizations involve asset-file revisions,
but 109 (59.6%) optimizations are simpler inner-class
code changes. The average number of revised files is 5.6,

and the average number of revised source-code lines is
19.9 (among source-code-revising optimizations).

• RQ4: Do performance repairs have effect on other as-
pects of software quality?
Motivation. The answers reveal the side effects of VR
performance optimizations.
Answer. Our findings show that 84 (45.9%) performance
optimizations have potential effects on software design
and behavior. In particular, 52 of them have potential
effect on program behavior (user interface) and the re-
maining 32 have potential effect on software design /
coding style.

• RQ5: How many performance repairs are systematic
changes which apply the same or similar code revisions
to multiple code locations?
Motivation. The answers reveal the repetitions of VR
performance optimizations, and are important for the
detection and repair of such issues.
Answer. Our findings show that 72 out of 183 (39.3%)
performance optimizations are systematic changes, and
certain categories of optimizations (i.e., Heap Avoidance,
API/Language optimization, and Graph Simplifications)
contains large proportion of systematic changes.

• RQ6: Do developers in organizational projects and per-
sonal projects behave differently in resolving VR perfor-
mance optimizations?
Motivation. Based on the answers, we can understand
the knowledge and habit difference between organizations
and personal developers.
Answer. Our findings show that the distributions of
performance optimization categories are very different
between organizational and personal projects. In particu-
lar, the top three categories of performance optimizations
in organizational projects are heap avoidance (24 of
107), language features / API optimizations (23 of 107),
and graphics simplifications (20 of 107), while the top
three categories of performance optimizations in personal
projects are graphics simplifications (20 of 76), rendering
optimizations (18 of 76), and value caching (11 of 76).

To sum up, our study makes the following contributions:

• We construct a data set of VR performance optimizations
that we used for our study. The data set also forms a
foundation for future research in this area.

• We develop a taxonomy of performance optimizations in
VR applications, and it extends the taxonomies of general
performance optimizations in the prior studies.

• We answer six research questions on VR performance
optimizations, including their impact on VR scene phases,
their complexity, their behavior / design effects, whether
they are systematical changes, and their different distri-
bution in organizational and personal projects.

The remaining part of this paper is organized as follows.
After presenting background knowledge about VR and Unity
in Section II, we will describe our experiment methodology
in Section III. Section IV presents the results of our study

2

and Section V presents discussion of lessons learned. Related
works and Conclusion will be discussed in Section VI and
Section VII, respectively.

II. BACKGROUND

In this study, we selected VR applications from UnityList,
and these applications are built upon Unity framework [18],
which is the dominating framework in VR software devel-
opment, and integrates with almost all existing VR / AR
platforms, including Apple ARKit [2], Android Daydream
/ Cardboard [7], [8], Google ARCore [6], Steam VR [17],
Windows Mixed Reality (Hololens) [12], etc. In the remaining
of our paper, we refer to a series of VR concepts using Unity-
specific terms. Please note that these concepts are general
and exist in all VR development frameworks as evidenced by
the seamless integration of Unity with a large variety of VR
platforms. We introduce these terms as follows.
Scenes. A VR scene refers to a space where a user immerses in
and interacts with when using a VR application. For examples,
a scene can be a virtual meeting room in a VR remote
conference application. A VR application usually consists of
multiple scenes linked with each other through events triggered
by users.
Game objects. Game objects are core components of scenes,
and a game object represents a virtual object in a scene space.
For examples, game objects can be tables / chairs in a virtual
meeting room. Game objects have very rich attributes to spec-
ify their appearance (e.g., color, surface texture, transparency),
physical properties (e.g., mass, speed, collision types), run-
time behaviors (defined in a c-sharp script attached to the
object), etc. Game objects can be compound hierarchically. For
example, a game object can combine a sword with a scabbard.
In this sense, game objects are similar with views / controls in
traditional GUI-based apps, but largely enriched for run-time
animations.
Prefabs. Since a VR application often contains multiple game
objects of the same type (e.g., multiple chairs of the same type
in one room and across multiple rooms). In such cases, the
definition of the set of similar game objects can be abstracted
to so-called Prefabs. The relationship between game objects
and prefabs are analogous to that between objects and classes
in object-oriented programming languages.
Scripts and assets. In a VR application, scripts (typically in
c sharp) are source code files, and they are attached to game
objects to define their logic behaviors. Besides scripts, there
are various asset files defining graphics behaviors (e.g., .3ds
and .fbx files for 3D models, .shader files for lighting
effects, .mat files for material textures, and .unity files
for scene settings). In our study, for simplicity, we consider
script files as source code files, and all other files as asset files.
The life cycle model of game objects. In the life cycle of
a scene, the Unity framework will trigger a series of life-
cycle callback methods on each of the game objects (as
implemented in the scripts attached to the objects) in the
scene. Figure 1 presents a simplified life-cycle model of
game objects. In particular, the Before-Scene phase methods

Before Scene:
Awake(), OnEnable(), OnLevelWasLoaded()

Object Init:
Start()

Physics Update:
FixedUpdate(), OnStateMachineEnter/Exit(),

OnAnimatorMove(), OnAnimatorIK(), OnTrigger*(),
OnCollision*(), WaitForFixedUpdate()

Input:
OnMouse*()

Logic Update:
Update(), WaitForSeconds(), StartCoroutine(),

OnStateMachineEnter/Exit(), OnAnimatorMove(),
OnAnimatorIK(), LateUpdate()

Render:
OnWillRenderObject(), OnPreCull(),

OnBecameVisible(), OnBecameInvisible(),
OnPreRender(), OnRenderObject(), OnPostRender(),

OnRenderImage(), OnDrawGizmos(), OnGUI()

Ending:
OnApplicationQuit(), OnDisable(), OnDestroy()

Every
Frame

Fig. 1: The Life-cycle Model of Game Objects

are executed before a scene is started; the Object-Init phase
methods are executed before the first frame update of the scene
or before the frame update immediately after a game object
is added to the scene; the methods in Physics-Update, Input,
Logic-Update, and Render phases are executed sequentially for
each frame; and the Physics-Update phase may be executed
multiple times within a frame if the frame rate is low. Finally,
the methods in the Ending phase are executed after the last
frame of the scene or after a game object is removed.

III. METHODOLOGY

Our study has the following steps. First, we collected 609
candidate performance-related commits from the git reposito-
ries of the 100 most recently updated VR projects. Second,
we manually inspected each of the code commits to identify
performance optimizations, and labelled them with category
tags, systematic-change tags, and behavior / design (RQ1,
RQ4, RQ5, and RQ6). Third, we applied static analysis on
the performance optimizations to understand they relations to
other parts of the code (RQ2 and RQ3).

3

Commit Msg Keyword
Search Using JGit

Unity Project
Repo

Potential
Perf

Commit

Count: 609

Manual Inspection of
Perf Commit

Confirmed
Optimizations
&Revised Lines

Count: 183
Call Graph

Analysis

Manual
Labelling

Commit
Analysis

RQ1: Optimization Taxonomy
RQ5: Behavior and Design Effects
RQ6: Organizational vs. Personal

RQ2: Affected Life-Cycle Phases

RQ3: Dependency Analysis
RQ4: Systematic Changes

Fig. 2: The Overview of Our Performance Optimization Study

A. Collection of Candidate Commits

From UnityList, we selected 100 most recently updated VR
software projects that have at least 100 historical commits.
We chose the recently updated projects and used the commit
threshold to ensure that the projects we considered are actively
maintained. We implement a tool upon JGit [10]. Within these
100 projects, our tool searches commit messages of all their
historical commits for performance-related commits, and the
returned results are our candidate commits. For the search, we
used performance, speed up, accelerate, fast, slow, latency,
contention, optimize, and efficient as our search keywords,
in that a prior study [26] used these keywords to collect
performance related bug fixes. We further used four keywords
fps, framerate, frame rate, and frame per second, which are
specific to VR/AR software projects. With this search strategy,
we identified 609 candidate code commits.

B. Manual Inspection and Reconciliation

Two of the authors independently inspected each of the 609
candidate code commits. For each code commit, each inspector
read its commit message and the revised files and reported
the following information: (1) revised lines in the commit
that represent one or multiple performance optimizations, if
there are any, (2) a category tag of the identified performance
optimization (to answer RQ1 and RQ6), (4) whether the
performance optimization has behavior / design effect to the
application such as affecting its functional features and design
quality (to answer RQ5).

In particular, for (1) identifying performance optimizations,
we consider only revisions directly related to performance
optimization. For example, in method m, when a local object
instantiation ins is replaced by a field reference (to avoid
heap allocations), some of m’s parameters required by ins
become unnecessary and thus can be removed. All invocations
of m also need to be updated to remove the corresponding
arguments. In this example, the replacement of ins is directly

related to the performance optimizations, so it is reported,
while the removal of parameters in m, and updates of m’s
invocations do not need to be manually reported and we
rely on static analysis in Section III-C to further identify
these related revisions. For (2) category tagging, we refer
to existing taxonomies in prior studies [34], [39], [47]. If
a performance optimization falls into categories in existing
taxonomies (e.g., API misuse, redundant checking), we add
the corresponding category tag on it. If an inspector cannot put
the optimization in an existing category, the inspector needs
to invent a new term for the new category. Terms invented
by different inspectors are merged in the later reconciliation
phase. For (3) behavior and design effects, we identify be-
havior effects on user interface from developers’ comments in
commit messages, and design effects by manually checking
whether the code revision violates common design principles.

After the inspection, we performed reconciliation to merge
inspection results. For (1) identifying performance optimiza-
tions, we went through each identified optimization to confirm
/ reject inspection results. We used the following rule to count
performance optimizations. Within one commit, if there are
multiple performance optimizations but they are unrelated to
each other, we report them as different performance optimiza-
tions. Meanwhile, even if they are unrelated, we count them as
one and label it as a systematic change, in the case that they
are instances of the same systematic change. For example,
when developers find that API method m1 is more efficient
than the API method m2 they are using, they may replace
all invocations of m2 to m1. Although these replacements
may not be related to each other they are instances of a same
systematic change, so we count all such replacements as one
performance optimization. For (2) category tagging, we first
merged the category tags we invented to form a combined
taxonomy and mapped category tags of performance opti-
mizations given by each inspector to the combined taxonomy.
After the mapping, if a performance optimization has incon-

4

sistent category tags, we discuss to decide its final category
tag. For (3) design and behavior effects, similar to category
tagging, we first merged the types of effects identified by
inspectors, and then identified performance optimizations with
inconsistent results after mapping. After that, we discussed to
make a final decision on the design and behavior effects of
those optimizations. We calculated the Cohen’s-Kappa value
between two coders. The score for optimization determination
is 0.840. For categorization, after labeling, we match the newly
added categories to have unified names for categories and then
Cohen’s-Kappa value on categorization is 0.713. Both values
show substantial agreement (above 0.6).

C. Analysis of Performance Optimizations

To answer RQ2 through RQ4, we need to identify code
related to performance optimizations and relations between
revisions in a commit. In particular, to answer RQ2, we
applied a call-graph analysis to identify the life-cycle methods
(as listed in Figure 1) that transitively invoked the revised
methods within a performance optimization. To answer RQ3,
we applied a code dependency analysis and code-asset anal-
ysis to identify other revised lines that are related to the
performance optimization. To answer RQ4, we applied code
clone detection to identify potential systematic changes and
manually confirmed the detected instances.

Before we can apply static analysis to revised lines, we pre-
cisely identified the revised code elements by comparing Ab-
stract Syntax Trees (ASTs). It should be noted that due to the
challenge of automatically building the projects [32], [33], we
chose to apply static analysis to the source code and perform
partial-code analysis [60]. In particular, we used srcML [15]
to parse the C-sharp source code and extracted AST-level
changes with the state-of-the-art diff tool GumTree [29]. Then,
we performed the call-graph analysis [28], code-dependency
analysis [5], and code clone detection [4].

To identify dependencies between scripts and asset files, we
compared meta IDs of scripts and asset files. In particular, all
scripts and asset files in Unity have a corresponding .meta
file which contains a unique identifier of the script / asset. By
tracking the IDs in the definition of game objects (in .prefab
files and .unity files), we can check whether a script and an
asset are attached to the same game object. If so, we consider
the revised lines in the script and the revised lines in the asset
file are related to each other.

IV. STUDY RESULTS

A. RQ1: Categorization of VR Performance Optimizations

In total, our study identified 11 categories of performance
optimizations from our candidate commits. The distribution
of optimizations over 11 categories is presented in Figure 3.
For the type of optimizations that can be matched to those in
earlier studies of traditional software optimizations [34], [47],
we present the mapping to corresponding literature in Table I.
In Column 1 of the table, we present our optimization types
that can be mapped to earlier literature. In Column 2 and 3
of the table, we present their corresponding name in literature

Graphics
Simplification, 44

Rendering
Optimization, 31

API/Language
Optimization, 28

Heap Avoidance,
27

Caching
Values, 22Conditionally

Avoid
Computation, 16

Multithread, 5

Move Code Out Of Frame
Update, 4

Remove Redundant
Check, 3

Code Simplification, 2

Algorithm
Update, 1

Fig. 3: Categorization of VR Performance Optimizations

[47] and [34], respectively. We use “-” to indicate that there
is no matching category in the corresponding literature. Note
that we use different names for our categories because we are
describing optimization types instead of root-cause types of
performance issues and we need category names to be short
enough to fit into chart legends.

Figure 3 shows that the most common types of optimiza-
tions are graphics simplifications, rendering optimizations,
API / language optimizations, heap avoidance, caching values,
and conditionally avoid computations. The six categories cover
168 of our total 183 studied optimizations. Among the six
categories, three of them (graphics simplifications, rendering
optimizations, heap avoidance) are new categories of optimiza-
tions, and the prior studies did not observe such optimizations
in general software projects. The three categories cover 102
(55.7%) optimizations.

Finding 1: We find three new categories of optimiza-
tions which are graphics simplifications, rendering
optimizations, and heap avoidance. They are not ob-
served in prior studies, and account for more than half
of studied optimizations, showing that the landscape of
optimizations in VR software is very different from that
of traditional software.

To better understand the characteristics and common pat-
terns of new major categories of VR optimizations, we present
some representative examples of optimizations below.
C1: Graphics Simplification. Developers simplify graphics
to achieve better performance. This type of optimizations
is similar to workarounds [49], since simplifications sacri-
fice the quality of graphics display. We found 44 graphics
simplifications from the 183 studied optimizations. The most
common subcategories of graphics simplifications are shader
simplifications (19 out of 44) which removes or simplifies run-
time lighting effects of game objects, and 3D model simplifi-
cations (14 out of 44) which replace the 3D model of a game
object with a simpler 3D model with less polygons. Other

5

TABLE I: Mapping of Optimization Types

Optimization Type Root Cause Type [47] Root Cause Type [34]
API/Language Optimization Inefficient API Usage API Misunderstanding
Caching Values Repeated Execution of the Same Operations -
Conditionally Avoid Computation A Computation Can Be Simplified or Avoided in Special Cases Skippable Functions
Multi-Thread - Synchronization Issues
Remove Redundant Check Repeated Check of Same Condition -

graphics simplifications include downgrade resolutions (6 out
of 44) and particle systems (provided by Unity framework
to handle particle effects such as fog and fire) simplification
(4 out of 44), and directly removing game objects from a
scene (1 out of 44). Most of these optimizations affect only
the visual experience of users, but some extreme cases may
have effect on software features. For example, in a shader
simplification (a85ab3ab6a0) from the Moon Motion project
(MoonMotionProject/MoonMotion.git), the developers largely
reduced the visible lighted area to reduce rendering costs.

Finding 2: Unlike in traditional software where per-
formance optimizations usually do not affect external
software behavior, in VR software, users’ visual ex-
perience and even some features can be sacrificed /
adapted for better performance.

Revision-wise, graphics simplifications are typically related
to revise the references pointing to model files or shader files,
as illustrated in example below.

cameraSkybox.mat
- m Shader: {fileID: 103, guid: 000...000, type: 0}
+ m Shader: {fileID: 10700, guid: 000...000, type: 0}

Listing 1: An Example of Shader Replacement (jdknox/vrDemo,
87a97d0)

C2: Rendering Optimizations. As VR frameworks like Unity
typically provides many optimization opportunities for its off-
stream software applications, developers shall properly design
their scenes and configure their projects to take full advantage
of such opportunities. For example, turning on static / dynamic
occlusion culling can avoid the rendering of game objects that
are occluded by other game object and turning on light-baking
can pre-calculate light effects during compilation time. Also,
setting game objects as static can avoid invoking many life-
cycle methods, and bundling objects together can reduce the
number of draw calls because when bundled multiple objects
can be drawn together with one draw call.

We identified 31 rendering optimizations in total. The most
common rendering optimizations are (1) draw-call batching
(10 out of 31) through game-object / mesh combinations,
(2) rendering setting changes (10 out of 31) such as turning
on occlusion culling and light baking, and (3) disabling
objects (8 out of 31) to avoid invoking unnecessary life-cycle
methods on static game objects. The remaining 3 rendering
optimizations change settings of colliders on game objects to
avoid simulation of certain types of collisions.

ChemView Main Scene.unity
- GameObject:

- m PrefabParentObject: {fileID: 100178, guid: 130...823, type: 3}
- m PrefabInternal: {fileID: 371302497}

CombinedMeshes ibuprofenDecimated.prefab
+ m Materials:
+ - {fileID: 2100002, guid: 130...823, type: 3}

Listing 2: An Example of Mesh Combination (CallumHoughton18/
ChemViewAR, 54ebcaf3)

For draw-call batching and disabling game objects, devel-
opers often need to re-organize game objects. List 2 shows an
example of mesh combinations. In the revision, meshes are
moved from the scene (.unity file above) to a newly created
combined mesh file (.prefab file below). Rendering setting
changes are not straightforward because developers need to
balance the positive and negative effects of certain settings.
For example, turning on occlusion culling may reduce the
rendering cost of occluded objects but will also cause extra
cost of calculating the occlusion relations.

Finding 3: The second largest category of optimiza-
tions are rendering optimizations (31 out of 183).
Unlike optimizing traditional software where often
only source code are modified, rendering optimiza-
tions involve various rendering configurations, so VR
developers shall have comprehensive knowledge on
configuring the framework and tuning scene designs
(e.g., the combinations of objects and meshes).

C3: Heap Avoidance. Although heap allocations can also po-
tentially cause performance issues in traditional software, their
effect is mainly on the memory side and are rare as reported in
the prior studies [35], [47]. However, avoiding heap allocations
is the fourth largest category of VR optimizations and accounts
for 27 out of 183 (14.8%) studied optimizations. In some
commit messages, developers mentioned that “to improve
performance one of the goals is to reduce heap allocations to
a minimum” (ExtendRealityLtd/Zinnia.Unity, 324b52b). VR
developers try to remove as many heap allocations as possible
because the garbage collection process is unpredictable and
costly. Although the garbage collection seldom causes sensible
lags in Internet and GUI software, its short-term performance
overhead may largely affect animation fluency. Furthermore,
many methods of VR software are invoked in each frame, so
if local objects are allocated in them, garbage will accumulate

6

11

6 5

0

22

7
4

27

14
11

0

41

8
11

0

5

10

15

20

25

30

35

40

45

BeforeScene ObjectInit PhysicsUpd Input LogicUpd Render Ending

Direct All

Fig. 4: Life-Cycle Phases Affected by Optimizations

very fast and the garbage collection will become very frequent,
making the performance overhead even more severe.

ButtonBorder.cs
+ private Vector3 weighDirection; ...

- Vector3 weighDireciton = new Vector3(Mathf.Abs(Alignment.x),

- Mathf.Abs(Alignment.y), Mathf.Abs(Alignment.z));

+ weighDirection.x = Mathf.Abs(Alignment.x);

+ weighDirection.y = Mathf.Abs(Alignment.y);

+ weighDirection.y = Mathf.Abs(Alignment.y);

Listing 3: An Example of Heap Avoidance (microsoft/MixedReality-
Toolkit -Unity, 5c26eb54)

In our study, we observed that the most common way (14
out of 27) to remove heap allocations is using a field reference
to replace object initialization, because a field of a class can
be initialized only once and reused in different methods. Other
ways to avoid heap allocations include avoiding the usage of
language features (e.g., LINQ [11]) that lead to allocation
of temporary objects (8 out of 27), and simplifying boxing
/ object data types to primitive types (5 out of 27). One
interesting observation is that developers may use references
to fields or singletons to replace local objects, which may
downgrade the application’s design quality. One example of
such replacement is presented in List 3.

Finding 4: VR developers try to reduce heap allo-
cations to a minimal level, even if the avoidance of
heap allocations may cause design quality downgrade
and requires understanding of temporary objects in
programming language implementation.

Other Categories. The remaining categories are reported in
prior studies. In particular, API / Language optimizations
replace API methods or language features with more effi-
cient ones. The prior studies [35], [47] report that this type
of optimizations is the most common type of performance
optimizations in other software. We find that API / Language
optimizations are also a major type of optimizations in VR
software. For example, we observed that developers replaced

Fig. 5: Size Distribution of Optimizations

their implemented matrix multiplications with API calls,
UnityObjectToClipPos(), to more efficiently translate
positions between coordinate systems. As another example, we
observed that developers replaced foreach with for, since
foreach increases the overhead [3].

Caching values is another major type of optimizations in
both VR and other software. It caches computation results in
memory, so that when the same computation is required, the
values stored in memory can be reused. The prior studies [39],
[47] observed caching values in other software, but not quite
common. Caching values is especially important in VR soft-
ware because many of its computations are performed per
frame, so caching the results will save computation resources.

In the category of conditionally avoid computations, de-
velopers add condition checks to skip certain computations,
and in the category of removing redundant checks, developers
remove the predicates whose values are always true or false.
Both categories are commonly observed in other software. In
the category of moving code out of frame updates, developers
move code from Update() methods to Start(), if the
code only need to executed only once.

Finally, multi-thread-related optimizations (adding paral-
lelism), code simplification (removing dead code), and al-
gorithm updates (using more efficient algorithms) are also
observed in other software, and they are rare performance
optimizations in both VR and other software.

B. RQ2: Affected Life-Cycle Phases

To answer RQ2, for each optimization, we use a call-graph
analysis to determine the influenced phase (see Figure 1) of
the optimization. This analysis identifies the impacts of the
optimizations with source code changes, but cannot identify
the impacts of the optimizations with only asset changes. After
our manual inspection, we determine that the optimizations on
only asset changes mainly affect the rendering phase.

The results are presented in Figure 4. In this figure, the “Di-
rect” bars denote that the revisions are directly made in life-

7

11322

48

CodeOnly CodeAsset AssetOnly

Fig. 6: Distribution of Source Code and Asset Optimizations

cycle phase methods, while the remaining are detected through
call-graph analysis. We notice that a half of the optimizations
are direct revisions of life-cycle methods. The distributions in
Figure 4 show that the logic update phase is the most affected
phase (41 out of 135 source-code-revising optimizations), and
the second affected phase is the before scene phase (27 out
of 135 source-code-revising optimizations). The observations
lead to a finding:

Finding 5: Among all life-cycle phases, the logic-
update and before-scene phases are mostly affected by
performance optimizations, indicating that developers
shall pay more attention to the two phases, when they
debug performance issues.

C. RQ3: Size and Complexity of Optimizations

To answer RQ3, we conduct a code dependency analysis to
obtain modified files of optimizations. For each optimization,
we measure its size with the number of modified files, methods
and statements, and we measure its complexity by whether it
involves both source files and asset files. If an optimization
involves only source files, we further measure its complexity
by whether it involves only one class (i.e., inner-class). Here,
if an optimization is a systematic change, we consider it as
inner-class, if each instance of the change is inner-class.

The distributions of modified files, methods and statements
are presented in Figure 5 (some extremely large outliers
are omitted). For methods and statements, we consider their
changes on optimizations with source file changes, in that
asset files do not have methods or statements. As many asset
files are automatically generated and updated, even a simple
modification can introduce many modified lines. For example,
when developers replace a game object in a scene, this simple
change modified many lines of code. To calculate the manual
effort accurately, we do not count modified lines in asset files.

Figure 5 shows that most performance optimizations do
not involve many files. The medium number of modified
files and methods are both one, and the medium number

of modified statements is eight. Furthermore, except a small
number of outliers, most optimizations modify fewer than six
files, six methods, and 40 statements. We further inspected
the outliers. Among the six optimizations involving more than
20 file revisions, three are systematic changes which replace
graphics models / shaders, two are systematic changes to
avoid the usage of heaps, and the remaining one is a ren-
dering optimization combining multiple game objects. Among
the seven optimizations involving more than 60 statement
revisions, five are systematic changes to avoid the usage of
heaps or API replacements to more effective ones; one is an
algorithm enhancement; and the remaining one is replacing
the developers own implemented code with an API call.

We further studied the proportion of optimizations that in-
volve only source code revisions, only asset file revisions, and
both source code and asset revisions. The result is presented
in Figure 6. From Figure 6, we can see that the majority of
optimizations involve only source code revisions. While 70
(38.3%) optimizations also involve asset file changes, only
22 (12.0%) optimizations involve both source code and asset
revisions. Furthermore, within the 113 optimizations with only
source-code revisions, 101 of them are inner-class revisions.

The above observations lead to a finding:

Finding 6: The majority of VR optimizations need
only small modifications on local files. Even when
some optimizations involve more files, they mostly
consist of repetitive smaller changes.

D. RQ4: Systematic Changes

In our study, we find that many optimizations are systematic
changes where a similar revision is made at different locations.
Figure 7 shows the proportion of systematic changes within
each category of optimizations. From the figure, we can see
that different categories of optimizations have different likeli-
hood to be systematic changes. Systematic changes are mostly
common in heap avoidance optimizations and API / Language
optimizations, where more than half of all optimizations are
systematic changes. Systematic changes are also common
in graphics simplifications because developers often need to
simply multiple game objects of the same category. In total,
72 (39.3%) out of the 183 optimizations are system changes.

Finding 7: Systematic changes are common among
VR performance optimizations, indicating that code
pattern detection tools and code-clone detection tools
can be useful for developers to find all locations to
perform revisions.

E. RQ5: Design and Behavior Effects

Performance optimizations may affect software design qual-
ity. However, a prior study [47] shows that effects on software
design are actually not common in Javascript optimizations. In
VR software development, due to the more severe performance

8

0 10 20 30 40 50

Graph. Simp.

Render. Opt.

API/Language

Heap Avoid.

Caching

Cond. Avoid Comp.

Multithread

Move Out Of Update

Rem. Redund. Check

Code Simp.

Algo. Update

Systematic Other

Fig. 7: Systematic Changes in Optimization Categories

No Effect, 99

Visual Effect, 52

Dynamic
Field, 13

Static
Field, 9

Complex Code, 6

Singleton, 3

Code Clone, 1

Other, 32

Fig. 8: Behavior/Design Effects of Performance Optimizations

bottleneck, developers may be more aggressive to optimize
code. To understand to what degree such optimizations affect
VR software, we analyzed the design and behavior effects of
VR optimizations, and the results are presented in Figure 8.
In total 84 (45.9%) out of 183 optimizations have design and
behavior effects. In particular, we identified 52 optimizations
with behavior effects, including lower resolutions (6), game
object simplifications (19), and animation simplifications (27).
Meanwhile, we identified 32 optimizations with design effects,
including replacing local variables with private dynamic field
access (dynamic field, 13), replacing local variables with
public static field access (static field, 9), using singletons
to avoid object allocation (singleton, 3), resulting in more
complicated code (complex code, 6), and code clone (1). Note
that the complex-code category mainly includes the change
from foreach to for which requires more code to iterate
over the collection. For dynamic fields, accessing private
dynamic fields is less negative than accessing public static
fields (like global variables), but it still causes side effects of
methods and additional dependencies (which are added only
for better performance) among methods.

Finding 8: Unlike the results on traditional software
from prior studies, a large portion of VR performance
optimizations may have effects on program behavior
and software design, showing that VR developers are
more aggressive in sacrificing other aspects of soft-
ware quality for performance.

Graph. Simp.: 20 (18.7%)

Heap Avoid.: 24 (22.4%)
API/Language: 23 (21.5%)

Render. Opt.: 13 (12.1%)
Cond. Avoid Comp.: 12 (11.2%)

Caching: 11 (10.3%)
Rem. Redun. Check: 2 (1.9%)
Move Out Of Update: 1 (0.9%)

Code Simp.: 1 (0.9%)

Graph. Simp.: 24 (31.6%)

Heap Avoid.: 3 (3.9%)

API/Language: 5 (6.6%)

Render. Opt.: 18 (24.0%)

Cond. Avoid Comp.: 4 (5.3%)

Caching: 11 (14.5%)

Rem. Redun. Check: 1 (1.3%)
Move Out Of Update: 3 (3.9%)

Code Simp.: 1 (1.3%)

MultiThread: 5 (6.6%)

Algorithm: 1 (1.3%)

Organization Projects Personal Projects

Fig. 9: Optimization Categories in Organizational/Personal Projects

F. RQ6: Organizational vs. Personal Projects

In our study, we found that VR software projects fall into
two very separated groups: organizational projects which are
driven by large companies and organizations like Microsoft,
Unity, and Extended Reality and personal projects which are
developed by individual developers or very small teams. We
believe that this is partly because VR is an emerging technique,
so large companies just start to move in while small start-ups
have not grown up yet. We use the criterion of 3 developers
and 50 stars (we set a star threshold because we find one
of the studied projects is a course project with more than
10 student developers) to separate projects. We identified
11 organizational projects with 107 optimizations, and 34
personal projects with 76 optimizations.

It is interesting to see whether performance optimizations
are different between these two groups of projects. We
compare the distribution of different optimization categories
between two groups of projects in Figure 9. Another conjecture
is developers from large organizations may care more about
design / behavior effects of optimizations, so we further com-
pare the distribution of optimizations with design / behavior
effects between two groups of projects in Figure 10.

From Figure 9, we find that the distribution of optimization
categories are different between the two groups of projects.
In particular, heap avoidance is most common in organization
projects, but rarely found in personal projects. Here, we double
checked to find that it appears in 8 out of 11 organizational
projects, showing that it is not the case that one project
dominates the result. API / Language optimizations also have
similar distribution. There may be two reasons behind this
major difference. First, personal project developers may be
inexperienced and not aware of the performance issues caused
by heap allocations and some inefficient API methods. Second,
since personal projects are typically of smaller scale, the
performance issues related to these two optimization categories
may be not exposed or simply not important.

Graphics simplifications and rendering optimizations are
common in both groups of projects, but more common in
personal projects. This is possibly because organizational
developers are less flexible in downgrading graphics quality
which may affect user experience. Also, some personal project

9

Static Field: 8 (7.5%)

No Effect: 61 (57.0%)
Visual Effect: 24 (22.4%)

Dynamic Field: 7 (6.5%)
Complex Code.: 6 (5.6%)

Code Clone: 1 (0.9%)

No Effect: 38 (50.0%)

Singleton: 3 (3.9%)

Visual Effect 28 (36.8%)

Organization Projects Personal Projects

Dynamic Field: 6 (7.9%)

Static Field: 1 (1.3%)

Fig. 10: Design/Behavior Effects in Organizational/Personal Projects

developers may be unfamiliar with rendering optimization set-
tings so they need to fix them while organizational developers
already set them properly at the beginning. Finally, the caching
category has similar distribution in two groups of software.

Finding 9: Distributions of optimizations categories
are very different between organizational and per-
sonal software projects. Heap avoidance and API/Lan-
guage optimization are most common in organizational
projects but rarely seen in personal projects, while
there are more graphics simplification and rendering
optimizations in personal projects.

From Figure 10, we can see that optimizations in organiza-
tional projects and personal projects have similar likelihood
to have design and behavior effect (43.0% vs. 50.0%). In
particular, optimizations in organizational projects cause more
design / behavior effects on static field access, and optimiza-
tions personal projects cause more design / behavior effects on
visual effect and singleton. We believe this is mainly related
to the difference between optimization-category distributions
(on heap avoidance and graphics simplification).

G. Threats to Validity

The major threat to the internal validity of our study is the
correctness of our manual inspection of performance optimiza-
tion commits. To reduce this threat, we have two inspectors to
independently inspect the commits, and perform reconciliation
of the inspection results afterward. Furthermore, we use static
analysis including call-graph analysis and static dependency
analysis to support our manual inspection to reduce potential
negligence of code portions. The major threat to the external
validity of our study is that our findings may be specific to our
set of projects and commits, or Unity and C# projects with
meta files. To reduce this threat, we collected performance
commits from 45 different projects including 11 organizational
projects from Unity, Microsoft, ExtendedReality, etc., and 34
projects from small teams / individual developers. While our
findings may be specific to UnityList / Unity / C# projects,
since UnityList is the largest VR open source repository, Unity
is a dominating VR framework, and C# is the default program-
ming language for Unity, such findings are still significant for
VR developers and researchers on VR performance and VR
software engineering.

V. LESSONS LEARNED

A. For VR Developers

For novices or experienced developers without VR experi-
ence, the findings in this paper lead to the following concrete
suggestions:

• VR developers should try to understand computation cost
of 3D models and shaders before using them. Testing
them when adding them will be helpful because once a
lot of models and shaders are added it can be difficult
to tell which one(s) cause the performance downgrade
(Note that profiling of individual game objects is still not
possible in current GPU).

• There are a lot of rendering optimization opportuni-
ties (e.g., occlusion culling, static light baking, mesh
combination) provided by the VR framework so novice
developers should learn about them and try to adapt their
scene design to make best use of them.

• Heap objects can cause frequent garbage collections
and thus affect the fluency of animation. Organizational
project developers tend to reduce heap allocations as
much as possible. So, developers may try to avoid using
too many heap allocations in methods invoked every
frame, and be aware that garbage collection may be the
reason for sudden downgrade of frame-per-second. Also,
it should be noted that some language features (e.g.,
Language Integrated Query) will also lead to temporary
heap objects after compilation.

B. For Software Engineering Researchers

Our study opens up many potential research opportunities
for software engineering researchers towards developing better
framework and IDE for VR developers.
Cost Estimation of Game Objects. Since GPU does not allow
profiling of individual game objects and developers often need
to select 3D models and shaders with proper cost, the cost
estimation of game objects is highly desirable. Combining
static analysis and machine learning (maybe supplemented
with delta debugging [58]), it is possible to precisely estimate
cost of individual game objects.
Estimate User Sensibility of Graphics Downgrades. Al-
though more of a topic of human-computer interaction and
machine learning, estimating whether graphics quality down-
grades are sensible to users can largely benefit VR developers
when they try to sacrifice rendering quality for performance.
Recommendation of Rendering Settings and Optimiza-
tions. VR frameworks have very complicated settings to
configure the optimizations in rendering. Making proper de-
cisions on settings often requires in-depth understanding of
the optimization mechanism in the back end (e.g., the differ-
ence between static and dynamic occlusion culling, in what
condition different meshes can be batched together), and the
scenes in the VR applications. An expert system to recommend
rendering setting can largely reduce developers’ effort on
searching the parameter space for best configuration.

10

Detection and Automatic Refactoring of Heap Allocations.
Detecting and refactoring heap allocations (including latent
allocations in certain language features) invoked every frame
can help developers to locate performance bottlenecks, which
can be done with static analysis and program transformation.
Such removal often cause downgrade of design quality (e.g.,
singletons, static fields), so some compilation-time optimiza-
tion technique may help to keep the benefit of both ends.
Pattern Detection Techniques for Systematic Changes.
Our study finds that systematic changes are common in
VR optimizations, showing that pattern detection techniques
may help to detect certain optimizing opportunities. Although
systematic editing tools [40] already exist, the extension of
such techniques to asset files (e.g., finding and maintaining
co-changing asset files) worth further study.
Empirical Studies on VR/AR Software Optimizations. Our
exploratory study acquired a number of interesting findings,
which may need further validation with a larger dataset and
more advanced statistical analysis. These findings may serve
as candidate hypothesis for future empirical studies on VR/AR
software optimizations.

VI. RELATED WORK

A. Studies on VR and Game Development

The authors are not aware of many efforts in the area of
VR software development, but there exist studies on game
development. Murphy-Hill et al. [42] performed a study on
video game developers to understand the challenges in video
game development and how they are different from tradi-
tional software development. Washburn et al. [53] studied
failed game projects to find out the major pitfalls in game
development. Lin et al. [38] studied the common updates in
steam platform to understand the priority of game updates.
Rodriguez and Wang. [46] performed an empirical study on
open source virtual reality software projects to understand
their popularity and common structures. Pascarella et al. [44]
studied open source video game projects to understand their
characteristics and the difference between game and non-game
development. Zhang et al. [59] studied possible solutions to
detect potential privacy leaks based on graphics user interface
analysis [45], [52], [54] of mobile augmented reality apps.
Compared with these research efforts, our study focuses on
VR software projects and concrete performance optimizing
code commits.

B. Studies on Performance Bugs and Optimizations

Since performance is a critical non-functional requirement
of software systems, various studies analyzed the performance
optimizations and bugs of software systems. Zaman et al. [56]
performed an bug report analysis [50] of Firefox project. Their
study focused on unique security and performance bugs of
Firefox web browser. Their followup work [57] analyzed the
bug reports of Firefox and Chrome to differentiate charac-
teristics performance and non-performance bugs. To identify
performance bug code patterns, Jin et al. [35] analyzed the root
causes of 109 performance bug collected from five projects.

Nistor et al. [43] did a study on performance and non-
performance bugs from three popular codebases: Eclipse JDT,
Eclipse SWT, and Mozilla. Liu et al. [39] studied the charac-
teristics of performance bugs in Android apps and proposed
pattern-based approach to detect such bugs. Selakovic and
Pradel [47] studied optimizations in JavaScript applications
to find out the major categories of JavaScript performance
optimizations and how they are different from optimizations
of other software. Han and Yu [30] performed an empirical
study of performance bugs in highly-configurable systems to
find out the relations between performance optimizations and
configuration spaces. Mostafa et al. [41] developed a testing
approach to identify performance regressions more efficiently.
In a recent effort, Chen et al. [26] studied 700 performance
bug fixing commits across 13 popular open-source projects
characterizes the relative frequency of performance bug types
as well as their complexity. Based on the results of perfor-
mance bug/optimization studies, there are also research efforts
on pattern-based performance bug detection. Chen et al. [25]
discussed performance anti-patterns for mobile applications.
Several other techniques [37], [48], [55] adopted static pattern
detection to detect performance bugs. Han et al. [31] utilize
machine learning to generate test frames to guide actual perfor-
mance test case generation. The prior studies on performance
bugs and optimizations focused on generic software or mobile
software. In our study, we focus on performance optimizations
in VR software, which we found to be very different from
those in other software projects.

VII. CONCLUSION

In this study, we conducted an empirical analysis on 183 VR
performance optimizations from 45 open source VR projects
from UnityList. We manually inspected the optimizations and
developed a taxonomy of VR performance optimizations. In
addition, we applied various analyses on the code revisions
to understand the life-cycle phases they affect, their com-
plexity, their design / behavior effects, and the repetitiveness
of revisions. We also compared the optimizations between
large organizations and small teams. To the best of our
knowledge, this is the first empirical study on VR performance
optimizations and we summarized nine useful findings for
VR developers and software engineering researchers to better
understand VR optimization. In the future, we plan to perform
larger scale studies on more projects to further validate the
findings of our study. Moreover, based on our findings, we plan
to develop code analyzers to detect performance-related bugs
in VR software, and to build a tool for providing suggestions
on VR performance optimization.

ACKNOWLEDGMENTS

The UTSA authors are supported in part by NSF Awards
NSF-1846467 and NSF-2007718. Hao Zhong is spon-
sored by the National Key R&D Program of China No.
2018YFC083050.

11

REFERENCES

[1] Apple app store. https://www.apple.com/ios/app-store/, 2020. Accessed:
2020-06-30.

[2] Apple arkit. https://developer.apple.com/augmented-reality/, 2020. Ac-
cessed: 2020-12-30.

[3] Avoid foreach. https://aeflash.com/2014-11/avoid-foreach.html, 2020.
Accessed: 2020-06-30.

[4] C sharp clone detection. https://archive.codeplex.com/?p=
clonedetectivevs, 2020. Accessed: 2020-06-30.

[5] Code dependency analysis. https://github.com/topics/
dependency-analysis?l=c\%23, 2020. Accessed: 2020-06-30.

[6] Google arcore. https://developers.google.com/ar, 2020. Accessed: 2020-
12-30.

[7] Google cardboard. https://arvr.google.com/cardboard/, 2020. Accessed:
2020-12-30.

[8] Google daydream. https://arvr.google.com/daydream/, 2020. Accessed:
2020-12-30.

[9] Google play. https://play.google.com/store, 2020. Accessed: 2020-06-30.
[10] Jgit - java implementation of the git version control system. https:

//www.eclipse.org/jgit/, 2020. Accessed: 2020-06-30.
[11] Language integrated query. https://docs.microsoft.com/en-us/dotnet/

csharp/programming-guide/concepts/linq/, 2020. Accessed: 2020-06-30.
[12] Microsoft hololens. https://www.microsoft.com/en-us/hololens, 2020.

Accessed: 2020-12-30.
[13] Mordor intelligence report on virtual reality market. https:

//www.mordorintelligence.com/industry-reports/virtual-reality-market,
2020. Accessed: 2020-06-30.

[14] Oculus app store. https://www.oculus.com/experiences/quest/, 2020.
Accessed: 2020-06-30.

[15] srcml - an infrastructure for the exploration, analysis, and manipulation
of source code. https://www.srcml.org/, 2020. Accessed: 2020-06-30.

[16] Statistica report on virtual reality software market. https://www.statista.
com/statistics/550474/virtual-reality-software-market-size-worldwide/,
2020. Accessed: 2020-06-30.

[17] Steam vr. https://store.steampowered.com/steamvr, 2020. Accessed:
2020-12-30.

[18] Unity documentation - 2d or 3d projects. https://docs.unity3d.com/,
2020. Accessed: 2020-06-30.

[19] Unity engine: A unicorn powering the video game and vr/ar
economy. https://digital.hbs.edu/platform-digit/submission/
unity-engine-a-unicorn-powering-the-video-game-and-vr-ar-economy/,
2020. Accessed: 2020-12-30.

[20] Unity ipo aims to fuel growth across gaming
and beyond. https://techcrunch.com/2020/09/10/
how-unity-built-a-gaming-engine-for-the-future/, 2020. Accessed:
2020-12-30.

[21] Unitylist. https://unitylist.com/, 2020. Accessed: 2020-06-30.
[22] Vr user statistics. https://techjury.net/blog/virtual-reality-statistics/#gref,

2020. Accessed: 2020-06-30.
[23] R. Albert, A. Patney, D. Luebke, and J. Kim. Latency requirements

for foveated rendering in virtual reality. ACM Transactions on Applied
Perception (TAP), 14(4):1–13, 2017.

[24] L. P. Berg and J. M. Vance. Industry use of virtual reality in product
design and manufacturing: a survey. Virtual reality, 21(1):1–17, 2017.

[25] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora. Detecting performance anti-patterns for applications developed
using object-relational mapping. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1001–1012,
New York, NY, USA, 2014. Association for Computing Machinery.

[26] Y. Chen, S. Winter, and N. Suri. Inferring performance bug patterns
from developer commits. In 2019 IEEE 30th International Symposium
on Software Reliability Engineering (ISSRE), pages 70–81, 2019.

[27] O. Ciftcioglu and M. S. Bittermann. Solution diversity in multi-objective
optimization: A study in virtual reality. In 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pages 1019–1026. IEEE, 2008.

[28] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming, pages 77–101. Springer, 1995.

[29] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus.
Fine-grained and accurate source code differencing. In ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, pages 313–324, 2014.

[30] X. Han and T. Yu. An empirical study on performance bugs for
highly configurable software systems. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 1–10, 2016.

[31] X. Han, T. Yu, and D. Lo. Perflearner: Learning from bug reports to
understand and generate performance test frames. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pages 17–28, New York, NY, USA, 2018.
Association for Computing Machinery.

[32] F. Hassan, S. Mostafa, E. S. Lam, and X. Wang. Automatic building
of java projects in software repositories: A study on feasibility and
challenges. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 38–47. IEEE,
2017.

[33] F. Hassan and X. Wang. Mining readme files to support automatic
building of java projects in software repositories. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C), pages 277–279. IEEE, 2017.

[34] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding
and detecting real-world performance bugs. ACM SIGPLAN Notices,
47(6):77–88, 2012.

[35] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. SIGPLAN Not., 47(6):77–88,
June 2012.

[36] C. D. Just. Performance analysis of a virtual reality development
environment: Measuring and tooling performance of vr juggler. Master’s
thesis, Citeseer, 2000.

[37] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. Anderson, and
R. Jhala. Finding latent performance bugs in systems implementations.
In Proceedings of the Eighteenth ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE ’10, pages 17–26,
New York, NY, USA, 2010. Association for Computing Machinery.

[38] D. Lin, C.-P. Bezemer, and A. E. Hassan. Studying the urgent updates of
popular games on the steam platform. Empirical Software Engineering,
22(4):2095–2126, 2017.

[39] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting
performance bugs for smartphone applications. In Proceedings of the
36th international conference on software engineering, pages 1013–
1024, 2014.

[40] N. Meng, M. Kim, and K. S. McKinley. Sydit: creating and applying
a program transformation from an example. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 440–443, 2011.

[41] S. Mostafa, X. Wang, and T. Xie. Perfranker: Prioritization of perfor-
mance regression tests for collection-intensive software. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 23–34, 2017.

[42] E. Murphy-Hill, T. Zimmermann, and N. Nagappan. Cowboys, ankle
sprains, and keepers of quality: How is video game development differ-
ent from software development? In Proceedings of the 36th International
Conference on Software Engineering, pages 1–11, 2014.

[43] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing
performance bugs. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 237–246. IEEE Press,
2013.

[44] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli. How is video
game development different from software development in open source?
In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 392–402. IEEE, 2018.

[45] X. Qin, H. Zhong, and X. Wang. Testmig: Migrating gui test cases from
ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 284–295, 2019.

[46] I. Rodriguez and X. Wang. An empirical study of open source virtual
reality software projects. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages
474–475. IEEE, 2017.

[47] M. Selakovic and M. Pradel. Performance issues and optimizations in
javascript: an empirical study. In Proceedings of the 38th International
Conference on Software Engineering, pages 61–72, 2016.

[48] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake. Predicting performance via automated
feature-interaction detection. In 2012 34th International Conference on
Software Engineering (ICSE), pages 167–177, 2012.

[49] D. Song, H. Zhong, and L. Jia. The symptom, cause and repair of
workaround. In Proc. ASE, page to appear, 2020.

12

[50] Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei. Jdf: detecting duplicate
bug reports in jazz. In 2010 ACM/IEEE 32nd International Conference
on Software Engineering, volume 2, pages 315–316. IEEE, 2010.

[51] B. Wang and P.-L. P. Rau. Effect of vibrotactile feedback on simulator
sickness, performance, and user satisfaction with virtual reality glasses.
In International Conference on Human-Computer Interaction, pages
291–302. Springer, 2019.

[52] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu.
Guileak: Tracing privacy policy claims on user input data for android
applications. In Proceedings of the 40th International Conference on
Software Engineering, pages 37–47, 2018.

[53] M. Washburn, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,
and C. Bird. What went right and what went wrong: An analysis of
155 postmortems from game development. In Proceedings of the 38th
International Conference on Software Engineering Companion, ICSE
’16, page 280–289, 2016.

[54] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao. Iconintent: automatic
identification of sensitive ui widgets based on icon classification for
android apps. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 257–268. IEEE, 2019.

[55] D. Yan, G. Xu, and A. Rountev. Uncovering performance problems in

java applications with reference propagation profiling. In Proceedings of
the 34th International Conference on Software Engineering, ICSE ’12,
pages 134–144. IEEE Press, 2012.

[56] S. Zaman, B. Adams, and A. E. Hassan. Security versus performance
bugs: A case study on firefox. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, pages 93–102,
New York, NY, USA, 2011. Association for Computing Machinery.

[57] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on
performance bugs. In Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories, MSR ’12, pages 199–208. IEEE Press,
2012.

[58] A. Zeller. Yesterday, my program worked. today, it does not. why? ACM
SIGSOFT Software engineering notes, 24(6):253–267, 1999.

[59] X. Zhang, R. Slavin, X. Wang, and J. Niu. Privacy assurance for android
augmented reality apps. In 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 114–1141. IEEE,
2019.

[60] H. Zhong and X. Wang. Boosting complete-code tool for partial pro-
gram. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 671–681. IEEE.

13

