
Lancer: Your Code Tell Me What You Need
Shufan Zhou, Beijun Shen*, Hao Zhong

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
{sfzhou567, bjshen, zhonghao}@sjtu.edu.cn

Abstract—Programming is typically a difficult and repet-
itive task. Programmers encounter endless problems during
programming, and they often need to write similar code over
and over again. To prevent programmers from reinventing
wheels thus increase their productivity, we propose a context-
aware code-to-code recommendation tool named Lancer. With
the support of a Library-Sensitive Language Model (LSLM)
and the BERT model, Lancer is able to automatically analyze
the intention of the incomplete code and recommend relevant
and reusable code samples in real-time. A video demonstration
of Lancer can be found at https://youtu.be/tO9nhqZY35g.
Lancer is open source and the code is available at https:
//github.com/sfzhou5678/Lancer.

Index Terms—Code recommendation, Code reuse, Language
model

I. INTRODUCTION

In software development activities, when programmers
encounter problems, they often search code examples to
learn how to handle such problems [1], [2]. Researchers
[3], [4] have proposed some code search engines to retrieve
code samples, and some recent approaches [5], [6] even
allow free-form queries (i.e., how to generate an md5 hash)
to search relevant code snippets. Alternatively, some clone
detection techniques [7], [8] can locate similar code snippets
of a given code sample. They allow programmers to refine
their code by learning its clones.

Although the above tools are useful, existing tools are
still not smart enough to recommend relevant code samples
during programming in real-time. For example, when a
novice write the incomplete code shown in Figure 1, she
may not know how to continue the programming task, and
needs code samples to learn how to complete it. Since she is
a novice and do not know the details, it is hard for her to use
only natural language to accurately depict her intention. On
the other hand, as the code is incomplete, clone detection
techniques often cannot locate useful code samples. As a
result, she has to find the solution by herself, which is time-
consuming and error-prone. Here, even if an experienced
programmer knows that a relevant code sample is useful,
she can fail to remember its location, and has to reinvent
the wheel. Therefore, locating appropriate code examples is
still a serious challenge for programmers.

To handle these challenges, we propose a recommendation
tool named SLAMPA in our previous work [9], which can
recommend code samples based on what is already written
under development. However, as SLAMPA uses only deep
learning technologies, it has the out-of-vocabulary (OOV)

*Corresponding author.

public ImageData getJPEGDiagram() {
Shell shell = new Shell();
GraphicalViewer viewer=new ScrollingGraphicalViewer();
LayerManager lm = (LayerManager) viewer.

getEditPartRegistry().get(LayerManager.ID);
...

}

Fig. 1. A piece of incomplete code.

problem [10]. In addition, its accuracies are relatively low,
and it is not fast enough to support real development.

In this paper, we proposed Lancer to further improve the
state of the art. Compared with SLAMPA, Lancer presents
a new language model called Library-Sensitive Language
Model (LSLM), and new algorithms to rank samples. We
constructed 2892 programming tasks, in which tools shall
recommend related code for a piece of incomplete code.
We compare Lancer with SLAMPA and two other clone
detection tools such as SourcererCC and CCLearner, for
their effectiveness of recommending related code samples.
For 45.4% of our programming tasks, the first recommended
code sample of Lancer is related to the incomplete code,
while the compared approaches can only handle 8.7∼ 25.3%
of them. In addition, on average, our result shows that Lancer
recommends a code sample in 0.67 seconds, which is fast
enough for real development.

II. LACNER

Figure 2 shows the overview of Lancer. We implement its
UI as an IntelliJ IDEA [11] plugin. A complete method in
our code repository is called as a code sample. The plugin
will recommend related code samples to programmers, based
on their incomplete code, when they are coding. Lancer
supports Java for now. To prepare the code repository
for recommendation, we implement a crawler to download
source files from open source communities (e.g., Github). In
total, we downloaded 12,674 Java projects which contains
16 million code samples1. To support recommending code
samples, Lancer implement a back-end server. We next
introduce its components.

A. Code Parser

We implement a method-level code parser atop of SLP-
Core [10], and it parses incomplete code under develop-
ment and source files in our code repository. From source
code, it extracts key information such as libraries, class

1To make a fair comparison with other tools, in Section III, we temporally
replace the repository with a much smaller benchmark.

Intention Analyzer

Sample Ranker

Code Repository

GitHub

 Sample Retriever

Code Parser

Manually labeled

similar code pairs
tokens and label

Lancer Plugin Lancer Back-End

recommended

code samples

tokens

libraries,

tokens, etc.

predicted

tokens

candidate

samples

query

(incomplete code)

candidate

samples

online recommending

data flow

offline preparing &

training data flow

source files

open-source

projects

Automatically

trigger

recommendation

requests

Gather

recommendation

results

user interactions

Fig. 2. The overview of Lancer.

names, method names, token sequences, return types, and
parameter types for each method. Compared with SLAMPA,
Lancer models methods in token-granularity rather than API-
granularity to alleviate the OOV problem.

B. Intention Analyzer

Hindle et al. [12] reported that language models can
capture the the repetition of programming languages (i.e.
code pattern). As shown in Equation 1, a language model
estimates the probability of a sequence S = t1, t2, ..., tm.

Pr(S) = Pr(t1, t2, ..., tm) =

n∏
i=1

Pr(ti|t1, ..., ti−1) (1)

where Pr(ti|t1, ..., ti−1) is the probability of occurrence of
each token when given its preceding tokens.

Given the token sequence of a parsed incomplete method,
Lancer captures its intention with our Library-Sensitive
Language Model (LSLM). With its support, Lancer is able
to predict follow-up tokens for an incomplete method. The
predicted tokens are implicitly appended to the current
tokens thus produce a semantically consistent and more
complete token sequence. Lancer then uses these tokens to
retrieve code samples (Section II-C) which are highly related
to the given incomplete method, and contain the code that
the programmers need to write as well.

Library-Sensitive Language Model. It is insufficient to
directly learn a language model from the parsed source code
as SLAMPA and other previous works did [10], [12], since it
can lose the details of programming scenarios. For example,
the token SWT.Text is much more likely to be invoked in
Java Graphical User Interface (GUI) related projects than its
overall probability, which is worth of consideration.

For a given code sample, we propose Library-Sensitive
Language Model (LSLM) to identify its application scenario.
LSLM is built on the open-vocabulary cache N-gram model
that is proposed by Hellendoorn and Devanbu [10], and we
extends this model to capture the code patterns for each
library (e.g. org.eclipse.jdt) separately. We select this model,
since Hellendoorn and Devanbu [10] report that it less suffers
from the OOV problem. In particular, it counts tokens within

a local scope and combines it with the general counter to
achieve the final prediction.

Our N-gram model for each library is initially learnt from
the tokens in source files which contain the specific library.
These models can also dynamically learn code pattern in
practice to alleviate the OOV problem. Compared with the
deep learning based language model used in SLAMPA, the
open-vocabulary cache N-gram model has a faster speed and
it is more robust when encountering OOV words [10] .

As multiple libraries are usually used together in a certain
scenario (e.g. SWT and Swing are usually used together
in Java GUI projects), we further leverage Topic-Sensitive
PageRank [13], a graph-heuristic association mining algo-
rithm, to assess the relevance scores between libraries. When
an incomplete code and the corresponding parsed tokens
come, LSLM finds out the most relevant libraries to the code
and predicts the several subsequent tokens. For each token
prediction, LSLM combines the predicted probabilities of all
the language models (one LM per relevant library) according
to their relevance scores to get the final probabilities, as
shown in Equation 2. The token with highest probability is
selected as the current predicted token.

Final Probability =

L∑
i=1

wi ∗ probi (2)

where L is the number of relevant libraries, w is the
relevance score and prob is the predicted token probabilities
of each language model.

C. Sample Retriever

This component builds inverted indices for parsed code
samples. When given a token sequence as the query, Lancer
has a coarse-grained matching phase to reduced the entire
code repository into hundreds of candidate samples to great-
ly improve the retrieval efficiency, which is different with
SLAMPA’s pairwise comparison.

1) Indexing: Lancer uses Elasticsearch [14] to index
parsed code samples. Elasticsearch is a distributed search
engine built for the cloud. Lancer builds inverted indices
for tokens of all the fields (e.g. class/method names, token
sequences, etc.) of each parsed code sample. The inverted

[CLS] file input stream [SEP] file reader

[CLS] file input stream [SEP] http server provider

P(0|pair)=0.15,

P(1|pair)=0.85

P(0|pair)=0.92,

P(1|pair)=0.08

Fig. 3. An illustration of the BERT-based Deep Semantic Ranking Scheme.
We pack the keyword sequences of the given method (in blue) and each
candidate code sample (in green) into a single sequence seperatly.

index of a particular token records which code samples
contain the token.

2) Matching: Given the tokens of an incomplete method
and the tokens predicted by our intention analyzer, Lancer
utilizes the built inverted indices to get code samples which
are related to these tokens from our enormous code reposi-
tory. Then Lancer uses the BM25 algorithm to estimate the
relevance of these code samples according to tokens. The top
one hundred samples are considered as candidate samples to
be recommended.

3) Filtering: Lancer takes an extra step to remove the
duplicate samples. We convert the token sequences of candi-
date samples into token-frequency dictionaries D. We then
calculate similarity scores between two code samples (sA
and sB) as follows:

Sim(sA, sB) = 1−
∑

x |freq(DA, x)− freq(DB , x)|∑
x |freq(DA, x) + freq(DB , x)|
x ∈ tokens(DA) ∪ tokens(DB)

(3)

where freq(DA, x) is a function which returns the frequen-
cy of token x in the token-frequency dictionary DA. When
two sequences have no overlapped tokens, the similarity
score will be set as 0.5 by default. If the similarity between
one sample and any other sample exceeds threshold σ = 0.9,
the sample will be removed.

D. Sample Ranker

If Lancer finds more than one candidate sample for a
given tokens, it uses a ranker to sort the samples. It is worth
noting that simply assuming the incomplete code given by
programmers and all the predictions made by our intention
analyzer are extractly correct may damage the robustness
of our code recommendation tool. Different with SLAMPA,
Lancer’s deep semantic ranking scheme, which leverages the
state of the art technique BERT [15] for text representation,
is able to filter out the noise candidate samples.

Deep Semantic Ranking Scheme. Typically, code names
reflect their functionalities [16]. BERT is a bidirectional pre-
training language model for text representation which has
achieved dazzling success in a large number of scenarios. We
incorporate BERT to leverage the code name information.
We finetune a pre-trained BERT model2 on manually labeled
similar code pairs, and the trained model can rank code
samples from a semantic perspective. Given a piece of
incomplete method and a set of code samples, we first split
their code names (i.e., class names, method names, and
variable names) into word sequences by their camel names.

2https://github.com/huggingface/pytorch-pretrained-BERT

For example, we split “InputStream” into “input”, and
“stream”. As shown in Figure 3 that we then pack the
words sequences of the given method and each sample
with special tokens [SEP] and [CLS] separately. The token
[SEP] is used to separate the two input sequences. The final
hidden state of the token [CLS] is used as the aggregate se-
quence representation for classification tasks. The integrated
sequence is finally fed into BERT for binary classification,
where label 1 stands for relevant while label 0 is on the
contrary. The probability of being classified as label 1 is
used as the final semantic correlation score for each pair.

III. EVALUATION

In our evaluation, we compared Lancer with SourcererCC
[8], CCLearner [17], and SLAPMA [9], for their effective-
ness of recommending code samples.

A. Training Models

1. Dataset. We select the BigCloneBench benchmark [18]
as the dataset of our evaluation. The benchmark has 42,120
source files, which includes 301,537 methods, and 8 million
LOCs in total. According to their functionalities, the source
code files in this benchmark are divided into ten categories
(e.g. decompressing zip archives). Their clones are manually
marked as T1, T2, ST3 (Strong Type 3), MT3 (Moderately
Type 3), and WT3/4 (Weak Type 3 or Type 4). Here, T1
denotes identical clones, and T4 denotes semantic clones that
are syntactically different. From BigCloneBench, we select
all the T1, T2, ST3, and MT3 clones, which include 42,120
files with 79,563 clones.

2. Our repository and our models. To align our inputs
with the compared approaches, we replace our GitHub-based
code repository with the source files of our dataset. When
training our models, as Li et al. did [17], we select the 23,193
source files under the “copy file” category as our training
set, and use the remaining 18,927 source files as a test set
to construct our tasks.

As our Language model does not need labels, we use all
the source files of the training set, when we train the model.
Our semantic ranking model needs labels, and we use the
clone relations in the training set as the labels.

B. Evaluation Setup

1. Our tasks. We construct programming tasks with
clones in our test set. If a method has a clone, we take
the top 1/5 code snippet as the input to retrieve its clones.
Our tasks illustrate the situations when a developer write
some code lines, but fail to complete the remaining ones.
We find that 2892 methods of the 18,927 source files have
their clones. As a result, in total, we construct 2892 tasks.

2. Evaluation metrics. For each task, we consider its
incomplete code as the code under development, and the
clones of the incomplete code as the golden standard. If a
recommended code sample is the clone of the code under
development, we mark it as a success.

We use HitRate@k (HR@k) and Mean Reciprocal Rank
(MRR), two metrics widely used in information retrieval,

TABLE I
OVERALL PERFORMANCE OF LANCER AND THE RELATED APPROACHES

Model HR@1 HR@5 HR@10 MRR Avg Time (s)

SourcererCC 0.087 0.191 0.240 0.130 -*
CCLearner 0.198 0.289 0.325 0.214 8.23
SLAMPA 0.253 0.368 0.460 0.281 12.73

Lancer 0.454 0.595 0.629 0.515 0.67
* The consumed time of SourcererCC is incalculable, because we execute

it several times with different thresholds.

to evaluate the effectiveness. The HitRate@k measures the
percentage of queries for which more than one correct results
exist in the top k ranked results. Formally:

HitRate@k =
1

|Q|
∑
q∈Q

ξ(R(q), k) (4)

where Q is a set of queries, R(q) is the set of recommended
code samples of query q, and ξ(·) is a function which returns
1 if the rank of the first hit result is no greater than k
and 0 otherwise. HitRate@k measures the ability of code
recommenders to identify relevant code samples. A better
code recommender should allow programmers to get the
relevant sample by inspecting fewer returned results. The
higher the HitRate value, the better the recommendation
performance. The MRR measures the inverse of the first
hit rank. MRR is calculated as follows:

MRR =
1

|Q|
∑
q∈Q

1

First hit rank of R(q)
(5)

The higher the MRR value, the better the performance.
SourcererCC does not provide the similarity scores of

the reported similar code samples so we cannot directly
rank its recommended samples. To address this problem, we
merge the results of SourcererCC with different similarity
thresholds to approximately get the ranked samples list. All
the evaluated models use the same dataset and take the first
fifth of the tokens as a query to search relevant code samples.

Besides the above two measures, we record the average
execution time to compare the performance of these tools.

C. Evaluation Results

As shown in Table I that Lancer finds more relevant code
samples than other approaches. The HR@1 value shows that
for 45.4% queries, the first code sample recommended by
Lancer is highly relevant to the query. The HR@10 value
shows that for 62.9% of the queries, the relevant samples
can be found within the top 10 results recommended by
Lancer. The results also demonstrate that the recommenda-
tions made by Lancer are extremely fast. Benefited from the
coarse-grained matching phase described in Section II-C,
it only takes 0.67s in average for Lancer to accomplish a
recommendation. While traditional clone detectors including
SourcererCC and CCLearner have a poor effectiveness in HR
and MRR metrics, and it is also time-consuming for these
techniques to perform code recommendation. These results
demonstrate that traditional clone detection techniques are
insufficient to recommend related code samples, when the

code under development is incomplete. Although SLAMPA
is designed to support this purpose, due to the limited
pairwise comparison matching mechanism and the OOV
problem encountered in practice, SLAMPA is much slower
than Lancer, and its accuracies are also poorer than Lancer.

IV. CONCLUSION AND FUTURE WORK

In this paper, we present Lancer, a context-aware code-
to-code recommending tool leveraging a Library-Sensitive
Language Model and a BERT model to recommend relevant
code samples in real-time. Our evaluation results show that
Lancer is more effective than the compared approaches. In
future work, we plan to further explore the following issues:
(1) supporting more programming languages than Java; (2)
collecting and analyzing feedbacks from developers; (3)
training a unified LM model and customizing it for specific
libraries; and (4) evaluating more technical details (e.g., the
impact of BERT).

V. ACKNOWLEDGEMENT

This research was sponsored by National Key R&D
Program of China (Project No. 2018YFB1003903 and
2018YFC0830500), and National Nature Science Founda-
tion of China (Grant No. 61472242 and 61572313).

REFERENCES

[1] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code exam-
ples,” in Proc. ICSE. ACM, 2014, pp. 664–675.

[2] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and recommending API usage patterns,” in Proc. ECOOP, 2009, pp.
318–343.

[3] “searchcode,” https://searchcode.com/.
[4] “Krugle,” http://opensearch.krugle.org/.
[5] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:

Effective code search based on API understanding and extended
boolean model,” in Proc. ASE, 2015, pp. 260–270.

[6] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proc. ICSE,
2018, pp. 933–944.

[7] K. Kim, D. Kim, T. F. Bissyande, E. Choi, L. Li, J. Klein, and
Y. Le Traon, “FaCoY–a code-to-code search engine,” in Proc. ICSE,
2018, pp. 946–957.

[8] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proc.
ICSE, 2016, pp. 1157–1168.

[9] S. Zhou, H. Zhong, and B. Shen, “SLAMPA: Recommending code
snippets with statistical language model,” in Proc. APSEC, 2018, pp.
79–88.

[10] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the
best choice for modeling source code?” in Proc. ESEC/FSE, 2017,
pp. 763–773.

[11] “Intellij idea,” https://www.jetbrains.com/idea/.
[12] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the

naturalness of software,” in Proc. ICSE, 2012, pp. 837–847.
[13] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proc. WWW, 2002,

pp. 517–526.
[14] “Elasticsearch,” https://www.elastic.co/products/elasticsearch.
[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] E. W. Høst and B. M. Østvold, “Debugging method names,” in Proc.
ECOOP, 2009, pp. 294–317.

[17] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A
deep learning-based clone detection approach,” in Proc. ICSME, 2017,
pp. 249–260.

[18] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in Proc. ICSME, 2014, pp. 476–480.

